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We study the time evolution of the reduced density matrix of a system of spin-1/2 particles interacting
with an environment of spin-1/2 particles. The initial state of the composite system is taken to be a
product state of a pure state of the system and a pure state of the environment. The latter pure state is
prepared such that it represents the environment at a given finite temperature in the canonical ensemble.
The state of the composite system evolves according to the time-dependent Schrödinger equation, the
interaction creating entanglement between the system and the environment. It is shown that independent
of the strength of the interaction and the initial temperature of the environment, all the eigenvalues of
the reduced density matrix converge to their stationary values, implying that also the entropy of the
system relaxes to a stationary value. We demonstrate that the difference between the canonical density
matrix and the reduced density matrix in the stationary state increases as the initial temperature of the
environment decreases. As our numerical simulations are necessarily restricted to a modest number of
spin-1/2 particles (<36), but do not rely on time-averaging of observables nor on the assumption that the
coupling between system and environment is weak, they suggest that the stationary state of the system
directly follows from the time evolution of a pure state of the composite system, even if the size of the
latter cannot be regarded as being close to the thermodynamic limit.
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1. Introduction

Statistical mechanics is one of the cornerstones of modern
physics1,2) but its foundations are still subject of much
research.3–23) Some fundamental questions, such as how the
canonical distribution emerges from the interaction between
a system S and its environment E, have only been partially
resolved. Answers to this question are important since the
canonical ensemble is widely used to calculate the thermo-
dynamic quantities of a system at a given temperature.

As well for classical as quantum systems it is well-known
that if the interaction between a system S and its much larger
environment E having a large number of degrees of freedom
and a dense distribution of energy levels, is weak, the system
S is described by a canonical ensemble when the composite
system Sþ E is described by the microcanonical ensemble
with a given total energy. Usually, the derivation of the
canonical distribution is discussed under the hypothesis
that each state in the microcanonical ensemble has equal
probability.1,2) In the case of quantum systems, it has

recently been shown that the microcanonical mixed state for
the composite system Sþ E is not a required starting point
for the system S to be described by a canonical ensemble,
but that Sþ E being initially in a randomly picked pure
state with small energy fluctuations is sufficient.7,10,11,14) The
characteristic that even if the state of the composite quantum
system Sþ E corresponds to a single wave function only, the
reduced density matrix of S is canonical for the over-
whelming majority of wave functions in the subspace
corresponding to the energy interval encompassed by the
microcanonical ensemble, is referred to as canonical
typicality after ref. 10. Not explicitly mentioning canonical
typicality, this characteristic had already been used to
calculate the density of states (DOS) of quantum many-body
systems.24,25) More recently it has been shown that canonical
typicality has a classical counterpart: For typical probability
distributions defined on an energy shell of the classical
composite system Sþ E, i.e., not necessarily microcanonical
distributions, the marginal probability distribution corre-
sponding to the system S exhibits the canonical form.26)

In this paper we focus on the equilibration obtained from
the dynamics of relatively small closed quantum systems
(containing less than 36 spin-1/2 particles) that we compose
from a small system S and a much larger but still relatively
small (containing less than 32 spin-1/2 particles) environ-
ment E. We use general quantum spin-1/2 Hamiltonians to
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describe S and E and we do not put any restriction on their
energy spectra. We study the conditions under which the
stationary state of the system S is represented by a canonical
ensemble density matrix, although the standard conditions,
such as the environment E being very large and the coupling
between S and E being weak, are not (necessarily) fulfilled.
The approach we use is to first solve the time-dependent
Schrödinger equation (TDSE) of the composite system
Sþ E of spin-1/2 particles numerically and then analyze
the behavior of the reduced density matrix of the system
S, obtained by tracing out the environment E, which was
initially prepared in a randomly picked ‘‘typical’’ pure state
with a given temperature.

Earlier work adopting this approach showed that a
nanoscale environment prepared in a uniform random
superposition of all states (corresponding to an environment
at infinite temperature) can drive the system to the state with
a canonical distribution27) and elucidated the effect of
frustration and connectivity on decoherence and relaxation
processes.28–30) In this paper, we extend the approach to
study the decoherence and relaxation properties of nanoscale
magnets embedded in a nanoscale magnetic environment at
finite temperature.

Our simulation results show that, independent of the
strength of the interaction between S and E and the initial
temperature of E, S evolves to a stationary state of which the
properties strongly depend on the initial temperature of E.
This equilibration is remarkable given the relative small size
of E, since usually in equilibration studies the hypothesis of
having a large environment is essential.14,20) We show that for
sufficiently large initial temperatures of E, the stationary state
of S is represented by a canonical ensemble density matrix
at some finite effective temperature. For decreasing tem-
peratures, the reduced density matrix of S deviates from
the canonical density matrix. The deviation increases for
decreasing values of the interaction strength between S and E.

The paper is organized as follows. In §2, we discuss the
model, define the quantities of interest and summarize the
essentials of the simulation method used. The simulation
results are presented in §3. A discussion and conclusion is
given in §4.

2. Generalities

In general, the state of a closed quantum system is
described by a density matrix.31,32) The canonical ensemble
is characterized by a density matrix that is diagonal with
respect to the eigenstates of the Hamiltonian H, the diagonal
elements taking the form expð��EiÞ where � ¼ 1=kBT is
proportional to the inverse temperature (kB is Boltzmann’s
constant and is taken to be one in this paper) and the Ei’s
denote the eigenenergies of H.1,2)

The time evolution of a closed quantum system is
governed by the TDSE.31,32) If the initial density matrix of
an isolated quantum system is non-diagonal then, according
to the time evolution dictated by the TDSE, it remains non-
diagonal and the quantum system never approaches the
thermal equilibrium state with the canonical distribution.
Therefore, in order to equilibrate the system S, it is necessary
to have the system S interact with an environment E, also
called a heat bath. Thus, the Hamiltonian of the composite
system Sþ E takes the form H ¼ HS þ HE þ HSE, where HS

and HE are the system and environment Hamiltonian,
respectively and HSE describes the interaction between the
system and environment.

2.1 Model
To study the evolution to the canonical ensemble state

in detail, we consider a general quantum spin-1/2 model
defined by the Hamiltonian H ¼ HS þ HE þ HSE where

HS ¼ �
XnS�1

i¼1

XnS
j¼iþ1

X
�¼x;y;z

J�i; jS
�
i S
�
j ; ð1Þ

HE ¼ �
XnE�1

i¼1

XnE
j¼iþ1

X
�¼x;y;z

��
i; jI

�
i I
�
j ; ð2Þ

HSE ¼ �
XnS
i¼1

XnE
j¼1

X
�¼x;y;z

��
i; jS

�
i I
�
j : ð3Þ

Here S and I denote the spin-1/2 operators of the system and
environment, respectively (we use units such that h� and kB

are one). The total number of spins in the system and
environment are denoted by nS and nE, respectively.

The spins of the system are arranged in a ring and interact
via an isotropic Heisenberg interaction J�i; j ¼ J. The spins of
the environment are all connected with each other and with
all the spins of the system. Previous work27–30) has shown
that it is expedient, though not essential to take for the spin–
spin interactions ��

i; j, and ��
i; j uniform random numbers in

the range ½�j�j; j�j�, and ½�j�j; j�j�, respectively. Relative
to other choices of these interactions, the randomness of the
interaction parameters � and � and the high connectivity of
the spins generally reduce the decoherence and relaxation
time to reach the stationary state of the reduced density
matrix. Note that we do not put any restriction on the energy
spectra of the Hamiltonians describing S and E.

2.2 Initial state
We prepare the state of the system S and of the

environment E separately at t < 0 and then bring them in
contact with each other at t ¼ 0. Specifically, we construct
the initial pure state of the composite system Sþ E, �ð0Þ ¼
j�ð0Þih�ð0Þj where

j�ð0Þi ¼ jSi �
e��HE=2j�Ei

h�Eje��HE j�Ei1=2
; ð4Þ

with j�Ei ¼
P

i cij�ii denoting the state of the environment
with the coefficients ci generated randomly according to the
prescription given in ref. 25 and fj�iig being an orthonormal
set of basis states which, in our simulation software, are
the usual direct products of the spin up and down states.
Numerically, the imaginary-time propagation by e��HE=2 is
performed by means of a Chebyshev polynomial algo-
rithm.33–36) To prepare the environment in its ground state
(� ¼ 1), we use the standard Lanczos method.37)

It follows directly from ref. 25 that for any observable
XEðt ¼ 0Þ of the environment

h�ð0ÞjXEðt ¼ 0Þj�ð0Þi � Tr �EXEðt ¼ 0Þ; ð5Þ

the approximation improving as the inverse square root of
the dimension of the Hilbert space of the environment (see
Appendix). Therefore, we may consider the state j�ð0Þi as
‘‘typical’’ in the sense that if we measure observables of
the environment, their expectation values agree with those
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obtained from the canonical distribution of the environment
at the inverse temperature �. Note that in practice, it is often
sufficient to consider only one random state j�Ei (see
Appendix).

The assumption of random phases in the initial state has
been instrumental in the derivation of the quantum master
equation,38,39) a key equation in the theory of non-equi-
librium statistical mechanics. Within the quantum master
equation approach, the approach to equilbrium of a quantum
system is well understood.1,39) Although there may be an
apparent similarity with the use of the random initial states
that we use in the present work, there is no relation between
the random initial states and the random phase assumption in
the derivation of the master equation. In the present work,
random initial states are a convenient computational device
only: As we show in the Appendix, their use effectively
eliminates the need to compute traces of operators and
allows us to work with pure states only. Below, we also
demonstrate explicitly that the use of random initial states
is not essential for the main conclusions of this paper by
starting the simulation from the initial state with all spins up.

2.3 Time evolution
A pure state of the composite system Sþ E evolves in

time according to (in units of h� ¼ 1)

j�ðtÞi ¼ e�itH j�ð0Þi ¼
XDS

i¼1

XDE

p¼1

cði; p; tÞji; pi; ð6Þ

where the states fji; pig are just another notation of the
complete set of orthonormal states in the spin-up–spin-down
basis and DS ¼ 2nS and DE ¼ 2nE denote the dimension of
the Hilbert space of the system and environment, respec-
tively.

Numerically, the real-time propagation by e�itH is carried
out by means of the Chebyshev polynomial algorithm,33–36)

thereby solving the TDSE for the composite system starting
from the initial state j�ð0Þi. This algorithm yields results
that are very accurate (close to machine precision), in-
dependent of the time step used.40)

2.4 Reduced density matrix
The state of the quantum system S is described by the

reduced density matrixe��ðtÞ � TrE �ðtÞ; ð7Þ

where �ðtÞ is the density matrix of the composite system at
time t and TrE denotes the trace over the degrees of freedom
of the environment. The system S is in the canonical state if
the reduced density matrix takes the form

b��ð�Þ � e��HS

TrS e��HS
; ð8Þ

where TrS denotes the trace over the degrees of freedom of
the system S. In terms of the expansion coefficients cði; p; tÞ,
the matrix element ði; jÞ of the reduced density matrix reads

e��i; jðtÞ ¼ TrE
XDE

p¼1

XDE

q¼1

c�ði; q; tÞcð j; p; tÞjj; pihi; qj

¼
XDE

p¼1

c�ði; p; tÞcð j; p; tÞ: ð9Þ

2.5 Data analysis
We analyze the time-dependent data of the reduced

density matrix in various ways. First, at each time step
(in units of � ¼ �=10), we diagonalize the (non-negative
definite) reduced density matrix itself and study the time-
dependence of its eigenvalues. We define the variance of the
set of eigenvalues at t and tf by

varðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXDS

i¼1

½�iðtÞ � �iðtfÞ�2

vuut ; ð10Þ

where �iðtÞ is the ith eigenvalue of e��ðtÞ. Usually, tf is taken
to be the final time of the simulation. From the eigenvalues,
we also compute the entropy of the system

SðtÞ � �Tre��ðtÞ lne��ðtÞ ¼ �XDS

i¼1

�iðtÞ ln �iðtÞ: ð11Þ

We characterize the degree of decoherence of the
system by

	ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXDS�1

i¼1

XDS

j¼iþ1

je��ijðtÞj2
vuut ; ð12Þ

where e��ijðtÞ is the matrix element ði; jÞ of the reduced density
matrix e�� in the representation that diagonalizes HS. Clearly,
	ðtÞ is a global measure for the size of the off-diagonal terms
of the reduced density matrix in the representation that
diagonalizes HS. If 	ðtÞ ¼ 0 the system is in a state of
full decoherence (relative to the representation that diago-
nalizes HS).

Assuming that the system S, evolving in time ac-
cording to the TDSE, relaxes to the canonical state we
expect that e��ðtÞ � b��ðbÞ for t > t0 where t0 is some
finite time and b denotes the effective inverse tempera-
ture of S. The difference between the state e��ðtÞ and the
canonical distribution b��ðbðtÞÞ is conveniently character-
ized by


ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXDS

i¼1

e��iiðtÞ � e�bðtÞEiXDS

i¼1

e�bðtÞEi

0BB@
1CCA

2

vuuuuut ; ð13Þ

with

bðtÞ ¼

X
i<j;Ei 6¼Ej

½lne��iiðtÞ � lne��jjðtÞ�=ðEj � EiÞX
i<j;Ei 6¼Ej

1
: ð14Þ

If the system relaxes to its canonical distribution both 
ðtÞ
and 	ðtÞ are expected to vanish, bðtÞ converging to the
effective inverse temperature b.

For any function f ð�Þ of the system Hamiltonian HS, we
define the averages

h f ðHSÞi ~��ðtÞ � Tre��ðtÞ f ðHSÞ; ð15Þ

h f ðHSÞib �
Tr e�bHS f ðHSÞ

Tr e�bHS
: ð16Þ

Then, application of the Schwarz inequality yields

jh f ðHSÞi ~��ðtÞ � h f ðHSÞibj2 	 
2ðtÞTr f 2ðHSÞ; ð17Þ
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showing that the deviations of the energy and entropy of the
system from their values in the canonical ensemble vanish
linearly or faster with 
ðtÞ.

3. Results

Most of our simulations have been carried out for systems
consisting of four spins coupled to an environment of
eighteen spins. We have verified that our conclusions do not
depend on details such as the connectivity of the spins in
the environment or the size of the composite system by
simulating triangular lattices, regular square lattices and so
on with up to 35 spins (data not shown).

In Fig. 1, we present the simulation results for varðt=�Þ,
Sðt=�Þ [see eqs. (10) and (11)], 	ðt=�Þ and 
ðt=�Þ [see
eqs. (12) and (13)] for the case that there is a fairly strong
coupling between the system S and the environment E

(j�=Jj ¼ 0:4) and for different values of the initial tem-
perature of the environment. From Fig. 1, it is clear that,
independent of the initial temperature of the environment, all
the eigenvalues �iðtÞ of the reduced density matrix converge
to a stationary value. This implies that also the entropy of the
system S approaches a stationary value, suggesting that the
system S relaxes to an equilibrium state. We emphasize that
the data presented in this paper are obtained without any
averaging procedure other than the one intrinsic to quantum
theory.

From Fig. 1, it follows from the data for 	ðtÞ that if � ¼ 1,
the reduced density matrix of the system S converges to a
diagonal matrix in the representation that diagonalizes HS,
in other words, the system S has lost virtually all coherence
(	! 0) and as 
! 0 with time, the system S relaxes to the
canonical system. The same holds for � ¼ 0 (see ref. 27).
With increasing �, the difference between the reduced

density matrix and the canonical distribution (for the system
defined by HS) increases slightly, as indicated by the fact
that the values of 	 and 
 increase with �.

It is instructive to analyze more quantitatively, the data
taken at the end of these particular simulation runs. In
Table I we collect the results for the various quantities of
interest. As � increases, 	 increases too, indicating that the
deviation from a diagonal matrix (with respect to the basis
that diagonalizes HS) increases, merely reflecting the fact
that the decoherence processes become less effective as the
temperature decreases. Nevertheless, even at zero temper-
ature, the difference between the reduced density matrix and
the canonical density matrix is quite small, of the order of a
few percent, and so are the differences for the entropy and
energy. Thus, it seems that even for fairly strong coupling
between the system and the environment (j�=Jj ¼ 0:4), the
nanoscale environment drives the even smaller system to a
state that, within a few percent, is described by the canonical
state of the system, albeit with an effective temperature that
does not agree with that of the environment (compare � and
b in Table I).
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Fig. 1. Simulation results for varðt=�Þ and Sðt=�Þ [see eqs. (10) and (11)] and 	ðt=�Þ and 
ðt=�Þ [see eqs. (12) and (13)] for different values of the initial

temperature of the environment, as obtained by solving the TDSE for a system consisting of a ring of four spins coupled to an environment of eighteen

spins. The spins of the environment are all connected with each other and with the four spins of the system. The initial state of the system S is given by

j"#"#i and the initial state of the environment E is given by a random pure state. Model parameters: J ¼ �0:5, � ¼ 0:2, � ¼ 0:5, tf=� ¼ 190; Sample

interval � ¼ �=10. Solid line: � ¼ 1; Dotted line: � ¼ 3; Dashed line: � ¼ 6; Dash-dotted line: � ¼ 1.

Table I. Data for 	, 
, S ~��, and E ~��, taken at the last time step of the

simulation run. Sb and Eb are calculated according to eq. (16).

� b 	 
 Sb S ~�� Eb E ~��

J ¼ �0:5, � ¼ 0:2, � ¼ 0:5

1 0.807 0.003 0.003 2.704 2.706 �0:165 �0:162

3 1.851 0.011 0.015 2.392 2.412 �0:400 �0:388

6 2.526 0.019 0.027 2.080 2.114 �0:543 �0:526

1 3.044 0.031 0.030 1.816 1.852 �0:638 �0:621
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3.1 Energy scale of the environment
To investigate the effect of the parameter �, the energy

scale of the states of the environment, we performed
simulations for � ¼ 0:125; 0:25; 0:5; 0:75; 1. In Fig. 2 we
present data for � ¼ 6. From earlier work28–30) for � ¼ 0 and
1 we know that the more the range and the width of the
energy spectrum of the environment and the system match
each other, the better the system decoheres. Taking this into
account we can easily understand the behavior of 	: When
the value of � decreases, the value of 	 decreases.

Except for � < jJj (recall J ¼ �0:5 in this paper), both
	ðtÞ and 
ðtÞ relax to fairy small values, the difference
between the reduced density matrix at t=� ¼ 200 with the
canonical states being of the order of a few percent (data not
shown). For � > jJj, the qualitative behavior is different:
Although SðtÞ, 	ðtÞ, and 
ðtÞ relax to their stationary values,
the difference between the reduced density matrix and the
canonical state is significant, as indicated by 
ðt=� ¼ 200Þ �
0:1. Qualitatively, this can be understood as follows.
Keeping the number of spins of the environment and the
range of S–E interactions � fixed, increasing � increases
the spectral range of the environment, that is the spacing
between the energy levels of the environment increases. This
effectively reduces the mixing of the eigenstates of the
system and the environment by the S–E interactions, which
in turn leads to a reduction of the effect of decoherence by
the environment and the probabilities for the system to
exchange energy with the environment.

3.2 Weak interaction between system and environment
For the simulation data presented earlier, the system–

environment interaction strength � was chosen such that
j�=Jj ¼ j�=�j ¼ Oð1Þ which is far away from the weak

coupling regime. If we reduce �, we may expect that the
time scale of decoherence and relaxation processes increases
with �. To keep the amount of computer time required to
reach the stationary state within reasonable limits, we have
chosen to reduce � by a factor ten, that is we take � ¼ 0:02

and consider this to be the ‘‘weak coupling’’ case. The
simulation results for this parameter choice are presented in
Fig. 3. Note that compared to Figs. 1 and 2, the time scale to
reach the stationary state has increased by a factor of about
one hundred. For � ¼ 1, there is no qualitative change
compared to the case of � ¼ 0:2: The state of the system
converges to the canonical state.

However, for � ¼ 6 the relatively large values of 	ðtÞ and

ðtÞ signal that the decoherence process is not very effective
and that the deviation from the canonical distribution is
significant, as is shown quantitatively in Table II. Never-
theless, the eigenvalues of the reduced density matrix relax
to their stationary values and so does the system entropy.
Qualitatively, this can be understood by the same argument
as the one used at the end of §3.1. Keeping the number of
spins of the environment and the spectral range of the
environment � fixed, decreasing the range of S–E inter-
actions � effectively reduces the mixing of the eigenstates
of the system and the environment, which in turn leads to a
reduction of the effect of decoherence by the environment
and the probabilities for the system to exchange energy with
the environment.

3.3 Properties of the stationary state
The observation that the eigenvalues of the reduced

density matrix, and therefore also the entropy of the system,
approach stationary values for a sufficiently long time seems
to be generic, independent of the values of the parameters
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Fig. 2. Simulation results for varðt=�Þ, Sðt=�Þ, 	ðt=�Þ, and 
ðt=�Þ for different values of the energy scale of the couplings between the spins in the

environment. The data are obtained by solving the TDSE for a system consisting of a ring of four spins coupled to an environment of eighteen spins. The

spins of the environment are all connected with each other and with the four spins of the system. The initial state of the system S is given by j"#"#i and

the initial state of the environment E is given by a random pure state. Model parameters: J ¼ �0:5, � ¼ 0:2, � ¼ 6, tf=� ¼ 190; Sample interval

� ¼ �=10. Solid line: � ¼ 0:125; Dotted line: � ¼ 0:25; Long-dashed line: � ¼ 0:5; Dash-dotted line: � ¼ 0:75. Short-dashed line: � ¼ 1.
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�=jJj 	 1, �=jJj 	 1, � and the initial state of the system
S or the environment E, as illustrated in Fig. 4. As a matter
of fact, in our large collection of simulation results (most
results not shown) there is no evidence of the contrary.
However, the stationary state itself depends on all the
above mentioned parameters. The time scale on which the
equilibration occurs strongly depends on the system–envi-
ronment interaction strength �. As expected, reducing �

increases the time scale of decoherence and relaxation
processes. Although our simulation results are obtained for a

very small quantum system connected to a relatively small
environment, they are in good agreement with findings for
interacting large quantum systems that seem to evolve in
such a way that any small subsystem equilibrates, under the
condition that the Hamiltonian has no degenerate energy
gaps and that the state of the composite system contains
sufficiently many eigenstates.20)

However, our simulation results also show that the
eigenstates of the reduced density matrix generally do not
evolve to a stationary state. In Fig. 5 (left) we show
representative results of a measure for the distance, the trace
distance disðt=�;�t=�Þ ¼ Tr je��ðtÞ � e��ðt þ�tÞj=2, between
the two reduced density matrices e��ðtÞ and e��ðt þ�tÞ as a
function of t for a fixed value of �t, as obtained from the
simulations that yield the data presented in Fig. 3. For
� ¼ 1, the case in which the difference between the reduced
density matrix and the canonical state is small, disðt=�;�t=�Þ
becomes very small for t=� > 8000, suggesting that the
eigenvectors of the reduced density matrix also converge
to their stationary values (in concert with the fact that in
this case, the reduced density matrix is very close to the
canonical state). In contrast, for � ¼ 6 and t=� large,
disðt=�;�t=�Þ levels off at a value which is not small. In
other words, although the eigenvalues of the reduced density
matrix relax to their stationary values, the eigenvectors
of the reduced density matrix exhibit nontrivial quantum
dynamics, even though the entropy of the system has
reached a stationary, nonzero, value.

In the case of a single spin and two-spins interacting with
an environment, the dynamics of eigenvectors of the reduced
density matrix in the stationary-state was observed earlier
through quantum oscillations of spin expectation values.41,42)

In Fig. 5 (right), we present results for the energy of the
subsystem, as obtained from the simulation that produced
the data of Fig. 3 (right). It is clear that the system energy
mostly decreases, with energy going from the system to the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000
δ(

t/τ
)

t/τ

0

0.5

1

1.5

2

2.5

3

0 2000 4000 6000 8000 10000

S
(t

/τ
)

t/τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000

σ(
t/τ

)

t/τ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000

va
r(

t/τ
)

t/τ

Fig. 3. Same as Fig. 1 except that the system–environment interaction strength � ¼ 0:02. Model parameters: J ¼ �0:5, � ¼ 0:02, � ¼ 0:5,
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Table II. Same as Table I except that the coupling � ¼ 0:02 instead of

� ¼ 0:2.

� b 	 
 Sb S ~�� Eb E ~��

J ¼ �0:5, � ¼ 0:02, � ¼ 0:5

1 0.874 0.003 0.005 2.692 2.696 �0:180 �0:175

6 3.349 0.047 0.207 1.659 2.125 �0:687 �0:495
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Fig. 4. The entropy of the system as a function of t=� for the same

system as in Fig. 1 except that the initial state of the system and envi-

ronment is the state with all spins up (solid line) or j�ð0Þi ¼ e��HE=2j�i=
h�je��HE j�i1=2 (dashed line) where j�i is a uniform random super-

position of all states of the whole system and � ¼ 6.
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environment. However, for some time intervals (one being
shown), the system energy increases, indicating that the
environment transfers energy to the system, a characteristic
feature of non-Markovian processes.43,44)

4. Conclusion

We have presented a simulation study of a small magnetic
system coupled to a nanoscale magnetic environment. The
quantum dynamical evolution of the composite system
was obtained from the direct numerical solution of the
TDSE. Our analysis, albeit numerical, does not involve any
approximation, does not rely on time-averaging of observ-
ables nor does it assume that the coupling between system
and environment is weak.

The most striking result of our analysis is that all the
eigenvalues of the reduced density matrix relax to stationary
values, implying that the entropy of the system relaxes to a
stationary value. In this sense, the nanoscale environment
drives the system to a thermodynamically stationary state, a
feature which is usually attributed to macroscopic environ-
ments only.

Furthermore, we have shown that under suitable but
fairly general conditions, the reduced density matrix in the
stationary state is close to the canonical state of the system,
albeit not with the same temperature as the one of the
environment. The difference between these two states
generally increases as the temperature of the environment
decreases.

For � � 0, the initial state of the environment has all the
features of a ‘‘canonical typicality’’ state and qualitatively,
our results are in concert with the theory of canonical
typicality: The reduced density matrix relaxes to the canon-
ical state.10,11) As � increases the concept of ‘‘canonical
typicality’’ no longer applies in the strict sense, as explained
in the Appendix. Yet, qualitatively, we may interpret our
findings in terms of the effective dimension deff

E of the
environment:11) If � � 0, deff

E ¼ OðDEÞ, which is a large
number for the systems that we have used in our simulations.
As � increases, the number of states of the environment
effectively available for decoherence and relaxation de-
creases (see also the results of the density of states in
Fig. A·1). As this implies that deff

E decreases, it is to be
expected that the difference between the reduced density
matrix and the canonical state increases.11)
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Appendix

The use of random initial states has played a central role
in developing ‘‘fast’’ (i.e., OðDÞ) algorithms to compute
the density of states and other similar quantities. An early
application of such an algorithm to electron motion in
disordered alloy models was given by Alben et al.45) It was
shown that the eigenvalue spectrum of a particle moving in
continuum space can be computed in the same manner.46)

Fast algorithms of this kind proved useful to study various
aspects of localization of waves,47–49) other one-particle
problems35,50,51) and many-body problems.24,25) The rigorous
proof that this approach has remarkable statistical properties,
namely that for large D the statistical error vanishes as
1=

ffiffiffiffi
D
p

, was given in ref. 25.
Following ref. 25, we consider real random variables

x1; y1; . . . ; xD; yD, taking values in the interval ½�1;þ1�
and distributed according to the probability density
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value �t=� ¼ 1000, extracted from the simulations that yield the data presented in Fig. 3. Solid line: � ¼ 1; Dashed line: � ¼ 6. Right: The energy of
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dynamical evolution of the system is non-Markovian.
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f ðx1; y1; . . . ; xD; yDÞ ¼
�ðDÞ
2�D


ðx2
1 þ � � � þ y2

D � 1Þ; ðA:1Þ

where �ðDÞ is the Gamma function. Writing cn ¼ xn þ iyn
for n ¼ 1; . . . ;D, we construct the random state

j�i ¼
XD
n¼1

cnj’ni; ðA:2Þ

where fj’nig is a complete set of orthonormal basis states of
the D-dimensional Hilbert space, which for the derivation
that follows need not be specified further.

From eq. (A·1), it directly follows that

hcki ¼
Z þ1
�1

ck f ðx1; . . . ; yDÞ dx1 . . . dyD ¼ 0; ðA:3Þ

hc�kck0 i ¼
Z þ1
�1

c�kck0 f ðx1; . . . ; yDÞ dx1 . . . dyD ¼ 
k;k0D�1;

ðA:4Þ
and that hckck0 i ¼ 0. It also follows from eq. (A·1) that j�i is
a unit random vector with a uniform probability density on
the hypersphere of dimension D� 1.

Next we consider the projected state

j�ð�=2Þi � e��H=2j�i ¼
XD
j¼1

dje
��Ej=2jEji; ðA:5Þ

where Ej (jEji) denotes the j-th eigenvalue (eigenstate) of
the Hamiltonian H and

dj ¼
XD
j¼1

Rjncn; ðA:6Þ

where Rjn ¼ hEjj’ni is the unitary transformation ma-
trix. The probability density of the random variables dj
reads

f ðd1; . . . ; dDÞ ¼
�ðDÞ
2�D


ðjd1j2 þ � � � þ jdDj2 � 1Þ: ðA:7Þ

Hence the dj are distributed uniformly over the D-dimen-
sional hypersphere. Furthermore, we have hdji ¼ 0 and
hd�j dj0 i ¼ D�1
jj0 .

Normalizing the state eq. (A·5) yields

j�ð�=2Þi ¼
XD
j¼1

dje
��Ej=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

j¼1

jdjj2e��Ej

vuut jEji �
XD
j¼1

ajjEji; ðA:8Þ

where

aj ¼
dj p

1=2
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD

j¼1

jdjj2pj

vuut ; ðA:9Þ

pj ¼
e��EjXD

j¼1

e��Ej

; ðA:10Þ

is the Boltzmann weight for the state j. In general, the
probability density of the coefficients aj is not uniform.

Next we want to show that for sufficiently large D, we
may replace

PD
j¼1 jdjj

2pj by its average over the distribution
eq. (A·7), that is by D�1. To prove this, we compute the
average of

X2 ¼ D�1 �
XD
j¼1

jdjj2pj

 !2

; ðA:11Þ

with respect to the distribution eq. (A·7). We have

hX2i ¼ D�2 � 2D�1
XD
j¼1

pjhjdjj2i þ
XD
j¼1

XD
j0¼1

pj pj0 hjdjj2jdj0 j2i

¼
XD
j¼1

XD
j0¼1

pj pj0 hjdjj2jdj0 j2i � D�2: ðA:12Þ

Using eqs. (2), (A·12), and (A·23) in ref. 25, we find

hjdjj2jdj0 j2i ¼
2
jj0

DðDþ 1Þ
þ

1� 
jj0
DðDþ 1Þ

¼
1þ 
jj0

DðDþ 1Þ
; ðA:13Þ

yielding

hX2i ¼
1

DðDþ 1Þ

XD
j¼1

p2
j �

1

D2ðDþ 1Þ

	
D� 1

D2ðDþ 1Þ
<

1

D2
: ðA:14Þ

Invoking Markov’s inequality,52) it follows that

PðX2 
 D�1Þ < D�1: ðA:15Þ

In words, the probability that the error X2 is larger than
D�1 is smaller than D�1. For the case at hand D increases
exponentially with the number of spins. For instance for a
system of 18 spins and a random state with probability
density eq. (A·1)

PðX2 
 0:38� 10�5Þ < 0:38� 10�5; ðA:16Þ

suggesting that for all practical purposes, it is safe to assume
that X � 0 and that with probability very close to one, the
projected state eq. (A·8) can be written as

j�ð�=2Þi ¼ D1=2
XD
j¼1

dj p
1=2
j jEji: ðA:17Þ

Putting bj ¼ dj p
1=2
j , the probability density of random

variables bj is

f ðb1; . . . ; bDÞ

¼ 

jb1j2

p1

þ � � � þ
jbDj2

pD
� 1

� �
�ðDÞ
2�D

YD
j¼1

pj

 !�1=2

:

ðA:18Þ
From these calculations, the following conclusions can be

drawn about the projected state eq. (A·17):
(1) From eq. (A·17) and the properties of random variables
fdjg, it follows directly that on average

h�ð�=2ÞjY j�ð�=2Þi ¼
Tr e��HY

Tr e��H
; ðA:19Þ

assuming that D is sufficiently large.25) Note that
if h�jE1i 6¼ 0 (jE1i denoting the non-degenerate
ground state) we have lim�!1h�ð�=2ÞjY j�ð�=2Þi ¼
hE1jYjE1i, independent of D.

(2) According to eq. (A·18), in general the projected state
eq. (A·17) is randomly distributed on a hyper-ellipsoid,
not on a hyper-sphere, in the Hilbert space. This
suggests that it may be of interest to extend the concept
of canonical typicality from states on a hyper-sphere to
states on an hyper-ellipsoid by introducing a non-zero
inverse temperature �.
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For completeness, we briefly discuss simulation results for
the case that we prepare the composite system Sþ E, not
just the environment E, in a pure state that is typical for the
canonical state at a given �, namely

j�ð0Þi ¼
e��H=2j�i
h�je��Hj�i1=2

; ðA:20Þ

where H is the Hamiltonian of the composite system,
j�i ¼

P
j cjj�ji is a pure state of the composite system, cj is

generated randomly according to the prescription given in
ref. 25, and fj�jig is an orthonormal set of basis states.
According to the theoretical analysis presented earlier in this
Appendix, averages taken with this pure state will yield the
values that are equal to those taken with respect to the
canonical state with temperature T ¼ 1=�.

Solving the TDSE with the initial state eq. (A·20) yields
results for 	ðtÞ, 
ðtÞ, varðtÞ, and SðtÞ that, up to small
fluctuations, are constant in time, apparently consistent with
the statement in ref. 10, that ‘‘��ðtÞ � �� even at t ¼ 0 for
typical wave functions’’. This may be taken as an indication
that the state eq. (A·20) is also ‘‘typical’’ in the sense of
‘‘canonical typicality’’. However, for the same reasons as
those given earlier, this conclusion would be incorrect unless
�! 0.

Obviously, the nanoscale models that we study are not
‘‘thermodynamic’’ in the usual sense, but the number of
states is quite large (Fig. A·1 shows the DOS of �4� 106

states) and it is possible, in principle, to find many (but not
macroscopically many) states with energies in a narrow

interval such that the DOS in this interval is almost constant.
However, this is not sufficient to apply conventional
statistical mechanics arguments: What is required is that
also the number of particles (22 – 35 in our work) is large.
Otherwise the fluctuations of the energy (which are propor-
tional to the inverse square root of the number of particles)
are not small and the equivalence between microcanonical
and canonical ensemble is no longer guaranteed.1,2)

Our simulations show that the dependence of 	ðtÞ, 
ðtÞ,
varðtÞ, and SðtÞ on � is qualitatively the same as in the case
that we use the product state eq. (4) as the initial state: In
all cases considered, the eigenvalues of the reduced density
matrix converge to stationary values. For comparison with
Table I, in Tables A·I and A·II we give the data extracted
from the simulations using eq. (A·20) as the initial state. It is
clear that both Tables show the same qualitative features as a
function of �. For � ¼ 1 and � ¼ 0:02 our results are in
concert with Tasaki’s analytical results7) for weak coupling
(�� � 1 in the notation of ref. 7).

When we prepare the composite system in a pure state that
is typical for the canonical state at a given �, the simulation
data of 	ðtÞ, 
ðtÞ, varðtÞ, and SðtÞ show very little time-
dependence (as discussed above). However, as suggested by
the data in Tables A·I and A·II, the reduced density matrix is
not equal to e��HS=TrS e��HS but is ‘‘renormalized’’ by the
interaction HSE as can be seen by the perturbative treatment
that follows.

Up to the second order in the interaction Hamiltonian HSE

we have53)

e��ðHSþHEþHSEÞ ¼ e��ðHSþHEÞ �
Z �

0

dx e�ð��xÞðHSþHEÞHSEe
�xðHSþHEÞ

þ
Z �

0

dx

Z x

0

dy e�ð��xÞðHSþHEÞHSEe
�ðx�yÞðHSþHEÞHSEe

�yðHSþHEÞ þOðH3
SEÞ; ðA:21Þ

yielding Z ¼ ZSZEð1� z1 þ z2Þ where ZS ¼ TrS e��HS , ZE ¼ TrE e��HE ,

z1 ¼
1

ZSZE
Tr

Z �

0

dx e�ð��xÞðHSþHEÞHSEe
�xðHSþHEÞ ¼

�

ZSZE
Tr e��ðHSþHEÞHSE; ðA:22Þ

z2 ¼
1

ZSZE
Tr

Z �

0

dx

Z x

0

dy e�ð��xÞðHSþHEÞHSEe
�ðx�yÞðHSþHEÞHSEe

�yðHSþHEÞ; ðA:23Þ

are the first- and second-order correction, respectively. Up to second order in the interaction Hamiltonian HSE, the reduced
density matrix therefore reads

Table A�I. Same as Table I except that the composite system Sþ E is prepared in a random state that is typical for the composite system being in the

canonical state at inverse temperature �.

� b 	 
 Sb S� S ~�� Eb E� E ~��

J ¼ �0:5, � ¼ 0:2, � ¼ 0:5

1 0.976 0.004 0.002 2.671 2.666 2.671 �0:202 �0:208 �0:202

3 2.602 0.025 0.016 2.042 1.838 2.003 �0:557 �0:630 �0:569

6 3.744 0.045 0.077 1.462 0.633 1.210 �0:742 �0:920 �0:799

1 4.575 0.029 0.132 1.092 0.000 0.673 �0:832 �1:000 �0:908

Table A�II. Same as Table A·I except that the coupling � ¼ 0:02 instead of � ¼ 0:2.

� b 	 
 Sb S� S ~�� Eb E� E ~��

J ¼ �0:5, � ¼ 0:02, � ¼ 0:5

1 0.998 0.003 0.001 2.666 2.666 2.666 �0:207 �0:208 �0:207

6 5.981 0.032 0.020 0.637 0.633 0.573 �0:920 �0:920 �0:928
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b��ð�Þ ¼ TrE e��ðHSþHEþHSEÞ

TrS TrE e��ðHSþHEþHSEÞ
¼

TrE e��ðHSþHEþHSEÞ

ZSZEð1� z1 þ z2Þ

¼ b�� 1þ z1 � z2 �
1

2
z21 �

1þ z1

ZE

Z �

0

dx TrE e��HEexHSHSEe
�xHS

þ
Z �

0

dx

Z x

0

dy TrE exHSe�ð��xþyÞHEHSEe
�ðx�yÞðHSþHEÞHSEe

�yHS

!
þOðH3

SEÞ; ðA:24Þ

showing that in the thermal equilibrium state, due to the
interaction, we should expect a deviation from the canonical
distribution of the system.

A direct numerical calculation of the various contributions
is beyond our current capabilities and we therefore leave
this calculation for future research. However, comparing the
energy and entropy of the system in the canonical state with
the corresponding values obtained from the simulation of
the composite system provides some idea of how much the
reduced density matrix changes as a result of the interaction
HSE. From Table A·I, we conclude that for � ¼ 0:2 the
differences jS� � S ~��j and jE� � E ~��j are of the order of 10%
or more, except for � ¼ 1. Hence � ¼ 0:2 definitely does
not correspond to the case of weak interaction. From
Table A·II, it is clear that � ¼ 0:02 and � ¼ 1 correspond to
weak interaction between environment and system because
S� � S ~�� and E� � E ~�� but for � ¼ 6, jS� � S ~��j is of the
order of 10%, hence not small. Thus, we conclude that for
both � ¼ 0:02 and 0.2, the effect of the interaction on the
reduced density matrix is significant if � ¼ 6, even if we
prepare the composite system in a typical canonical state.
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Phys. Rev. Lett. 101 (2008) 063001.

20) N. Linden, S. Popescu, A. J. Short, and A. Winter: Phys. Rev. E 79

(2009) 061103.

21) J. Cho and M. S. Kim: Phys. Rev. Lett. 104 (2010) 170402.

22) S. Genway, A. F. Ho, and D. K. K. Lee: arXiv:1005.4863v1.

23) S. Goldstein, J. L. Lebowitz, C. Mastrodonato, R. Tumulka, and N.

Zanghı̀: Phys. Rev. E 81 (2010) 011109.

24) P. de Vries and H. De Raedt: Phys. Rev. B 47 (1993) 7929.

25) A. Hams and H. De Raedt: Phys. Rev. E 62 (2000) 4365.

26) A. R. Plastino and A. Daffertshofer: Europhys. Lett. 84 (2008) 30006.

27) S. Yuan, M. Katsnelson, and H. De Raedt: J. Phys. Soc. Jpn. 78 (2009)

094003.

28) S. Yuan, M. Katsnelson, and H. De Raedt: JETP Lett. 84 (2006) 99.

29) S. Yuan, M. Katsnelson, and H. De Raedt: Phys. Rev. A 75 (2007)

052109.

30) S. Yuan, M. Katsnelson, and H. De Raedt: Phys. Rev. B 77 (2008)

184301.

31) J. von Neumann: Mathematical Foundations of Quantum Mechanics

(Princeton University Press, Princeton, NJ, 1955).

32) L. E. Ballentine: Quantum Mechanics: A Modern Development (World

Scientific, Singapore, 2003).

33) H. Tal-Ezer and R. Kosloff: J. Chem. Phys. 81 (1984) 3967.

34) C. Leforestier, R. Bisseling, C. Cerjan, M. Feit, R. Friesner, A.

Guldberg, A. Hammerich, G. Jolicard, W. Karrlein, H.-D. Meyer, N.

Lipkin, O. Roncero, and R. Kosloff: J. Comput. Phys. 94 (1991) 59.

35) T. Iitaka, S. Nomura, H. Hirayama, X. Zhao, Y. Aoyagi, and T.

Sugano: Phys. Rev. E 56 (1997) 1222.

36) V. Dobrovitski and H. De Raedt: Phys. Rev. E 67 (2003) 056702.

37) G. H. Golub and C. F. Van Loan: Matrix Computations (John Hopkins

University Press, Baltimore, ML, 1996).

38) L. Van Hove: Physica 21 (1954) 517.

39) L. Van Hove: Physica 23 (1957) 441.

40) H. De Raedt and K. Michielsen: in Handbook of Theoretical and

Computational Nanotechnology, ed. M. Rieth and W. Schommers

(American Scientific Publishers, Los Angeles, CA, 2006) p. 2.

41) V. Dobrovitski, H. De Raedt, M. Katsnelson, and B. Harmon: Phys.

Rev. Lett. 90 (2003) 210401.

42) A. Melikidze, V. Dobrovitski, H. De Raedt, M. Katsnelson, and B.

Harmon: Phys. Rev. B 70 (2004) 014435.

43) H.-P. Breuer, E.-M. Laine, and J. Piilo: Phys. Rev. Lett. 103 (2009)

210401.

44) H.-P. Breuer, E.-M. Laine, and J. Piilo: Phys. Rev. A 81 (2010)

062115.

45) R. Alben, M. Blume, H. Krakauer, and L. Schwartz: Phys. Rev. B 12

(1975) 4090.

46) M. Feit, J. Fleck, and A. Steiger: J. Comput. Phys. 47 (1982) 412.

47) H. De Raedt and P. de Vries: Z. Phys. B 77 (1989) 243.

48) T. Kawarabayashi and T. Ohtsuki: Phys. Rev. B 53 (1996) 6975.

49) T. Ohtsuki and T. Kawarabayashi: J. Phys. Soc. Jpn. 66 (1997) 314.

50) T. Iitaka, S. Nomura, H. Hirayama, X. Zhao, and Y. Aoyagi: Phys.

Rev. B 56 (1997) 4348.

51) S. Nomura, T. Iitaka, X. Zhao, T. Sugano, and Y. Aoyagi: Phys. Rev.

B 59 (1999) 10309.

52) G. R. Grimmet and D. R. Stirzaker: Probability and Random

Processes (Clarendon Press, Oxford, U.K., 1995).

53) S. Mori and S. Miyashita: J. Phys. Soc. Jpn. 77 (2008) 124005.

J. Phys. Soc. Jpn., Vol. 79, No. 12 F. JIN et al.

124005-10

http://dx.doi.org/10.1103/PhysRev.114.948
http://dx.doi.org/10.1103/PhysRevLett.54.1879
http://dx.doi.org/10.1103/PhysRevE.54.2404
http://dx.doi.org/10.1103/PhysRevLett.80.1373
http://dx.doi.org/10.1103/PhysRevLett.86.1927
http://dx.doi.org/10.1140/epjb/e2003-00029-3
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1103/PhysRevLett.96.050403
http://dx.doi.org/10.1038/nphys444
http://dx.doi.org/10.1140/epjb/e2006-00407-3
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevLett.99.160404
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.130401
http://dx.doi.org/10.1103/PhysRevLett.98.130401
http://dx.doi.org/10.1103/PhysRevLett.100.120404
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1103/PhysRevLett.100.030602
http://dx.doi.org/10.1103/PhysRevLett.101.063001
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://dx.doi.org/10.1103/PhysRevE.79.061103
http://dx.doi.org/10.1103/PhysRevLett.104.170402
http://dx.doi.org/10.1103/PhysRevE.81.011109
http://dx.doi.org/10.1103/PhysRevB.47.7929
http://dx.doi.org/10.1103/PhysRevE.62.4365
http://dx.doi.org/10.1209/0295-5075/84/30006
http://dx.doi.org/10.1143/JPSJ.78.094003
http://dx.doi.org/10.1143/JPSJ.78.094003
http://dx.doi.org/10.1134/S0021364006140128
http://dx.doi.org/10.1103/PhysRevA.75.052109
http://dx.doi.org/10.1103/PhysRevA.75.052109
http://dx.doi.org/10.1103/PhysRevB.77.184301
http://dx.doi.org/10.1103/PhysRevB.77.184301
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1016/0021-9991(91)90137-A
http://dx.doi.org/10.1103/PhysRevE.56.1222
http://dx.doi.org/10.1103/PhysRevE.67.056702
http://dx.doi.org/10.1016/S0031-8914(54)92646-4
http://dx.doi.org/10.1016/S0031-8914(57)92891-4
http://dx.doi.org/10.1103/PhysRevLett.90.210401
http://dx.doi.org/10.1103/PhysRevLett.90.210401
http://dx.doi.org/10.1103/PhysRevB.70.014435
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevLett.103.210401
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevA.81.062115
http://dx.doi.org/10.1103/PhysRevB.12.4090
http://dx.doi.org/10.1103/PhysRevB.12.4090
http://dx.doi.org/10.1016/0021-9991(82)90091-2
http://dx.doi.org/10.1007/BF01313668
http://dx.doi.org/10.1103/PhysRevB.53.6975
http://dx.doi.org/10.1143/JPSJ.66.314
http://dx.doi.org/10.1103/PhysRevB.56.R4348
http://dx.doi.org/10.1103/PhysRevB.56.R4348
http://dx.doi.org/10.1103/PhysRevB.59.10309
http://dx.doi.org/10.1103/PhysRevB.59.10309
http://dx.doi.org/10.1143/JPSJ.77.124005

	c_rf1
	c_rf2
	c_rf3
	c_rf4
	c_rf5
	c_rf6
	c_rf7
	c_rf8
	c_rf9
	c_rf10
	c_rf11
	c_rf12
	c_rf13
	c_rf14
	c_rf15
	c_rf16
	c_rf17
	c_rf18
	c_rf19
	c_rf20
	c_rf21
	c_rf22
	c_rf23
	c_rf24
	c_rf25
	c_rf26
	c_rf27
	c_rf28
	c_rf29
	c_rf30
	c_rf31
	c_rf32
	c_rf33
	c_rf34
	c_rf35
	c_rf36
	c_rf37
	c_rf38
	c_rf39
	c_rf40
	c_rf41
	c_rf42
	c_rf43
	c_rf44
	c_rf45
	c_rf46
	c_rf47
	c_rf48
	c_rf49
	c_rf50
	c_rf51
	c_rf52
	c_rf53

