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Here we give the details of the numerical approach of calculating the density of states and conductivity of graphene
with realistic impurities. In our model, we use a full tight-binding Hamiltonian to calculate the density of states
and conductivity by solving the time-dependent Schrödinger equation (TDSE) in real space. This differs from the
numerical calculations of the conductivity of disordered two-dimensional massless Dirac fermions reported in Ref.
[1, 2], where the single-valley Dirac Hamiltonian is used. A resulting advantage our method is that the energy
range of the conductivity can cover all the spectrum, not only around the Dirac point. Moreover, we do not need
to diagonalize the whole Hamiltonian to obtain the energy eigenstates which allows us to carry out calculations of
relatively large samples, e.g., containing up to N = 8192 × 8192 carbon atoms. The memory and CPU time in our
algorithm is linearly dependent on the size of the sample. In the following we first explain how we obtain the density
of states and afterwards how the conductivity is calculated using a Kubo formula.

DENSITY OF STATES

The tight-binding Hamiltonian of the graphene with resonant impurities can be represented as

H = −t
∑

<i,j>

c+
i cj + εd

∑

k

d+
k dk + V

∑

k

(
d+

k ck + H.c.
)
, (1)

where t is the nearest-neighbor hoping between the carbon atoms, V is the hoping between the carbon atoms and
resonant impurities, and εd is the on-site energy of impurities.

The density of states (DOS) describes the number of states at each energy that are available to be occupied. An
algorithm based on the evolution of TDSE to find the eigenvalue distribution of very large matrices is described in
Ref [3]. The main idea is using a random superposition of all basis states as an initial state |ϕ〉:

|ϕ〉 =
∑

i

ai |i〉 , (2)

where {|i〉} are the basis states and {ai} are random complex numbers. After performing the time evolution to get
the wave function at equal time intervals by solving the TDSE and calculating the correlation function on each time
step,

〈ϕ| e−iHt |ϕ〉 , (3)

the Fourier transform on these correlation functions yields the spectral function of the initial state as

d (ε) =
1

2π

∫ ∞

−∞

eiεt 〈ϕ| e−iHt |ϕ〉 dt. (4)

Averaging over many different samples (initial states) leads to the density of states as

ρ (ε) = lim
S→∞

1

S

S∑

P=1

dP (ε) . (5)

For a large enough system, e.g., a graphene sample consisting of 4096 × 4096 ≈ 1.6 × 107 atoms, one initial random
superposition state (RSS) contains already contributions from sufficiently many eigenstates that its spectral function
is approximately equal to the DOS of an infinite system, i.e.,

ρ (ε) ≈ d (ε) . (6)
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Figure 1: (Color online) Comparison of the analytical DOS (black solid) with the numerical results of a sample contains
512× 512 (red dash) or 4096× 4096 (green dot) carbon atoms.

We would like to emphasize that any orthogonal and complete basis can be used to represent |ϕ〉. In the tight-binding
model of graphene, it is convenient to use the real space basis. A detailed analysis of this method is given in Ref. [3].

To illustrate the convergence properties, here, we compare the analytical and numerical results of the density of
states for a clean graphene in Fig. 1. The analytical results as obtained in Ref. [4] are

ρ (E) = {
2E

t2π2

1√
F (E/t)

K

(
4E/t

F (E/t)

)
, 0 < E < t,

2E
t2π2

1√
4E/t

K

(
F (E/t)
4E/t

)
, t < E < 3t,

(7)

where F (x) is given by

F (x) = (1 + x)
2 −

(
x2 − 1

)2

4
, (8)

and K (m) is the elliptic integrals of first kind:

K (m) =

∫ 1

0

dx
[(

1 − x2
) (

1 − mx2
)]−1/2

. (9)

It becomes clear that our numerical results fit very well the analytical expression, and that the difference between the
numerical and analytical results becomes smaller when using larger sample size (see the difference of a sample with
512× 512 or 4096× 4096 in Fig. 1). In fact, the LDOS of a sample containing 4096× 4096 is approximately the same
as DOS of a pure graphene, which indicates the high precision of the algorithm.

From the numerical calculations of DOS we find that a RSS |ϕ〉 typically contains all the eigenstates with approx-
imately equal probabilities. Therefore, we can also use |ϕ〉 as a starting state to calculate the DC conductivity by
using the Kubo formula, as we will show in the next section.

KUBO FORMULA

The Kubo formula of non-interacting electrons can be expressed as [5, 6]

σ = − 1

V
Tr

{
∂f

∂H

∫ ∞

0

dt
1

2
[JJ (t) + J (t)J ]

}
. (10)

where f is the Fermi-Dirac distribution, and J (t) is Heisenberg representation of the current operator J . At zero
temperature, ∂f

∂H can be simplified as

− ∂f

∂H
= δ (EF − H) , (11)
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where EF in the Fermi energy. Now Eq. (10) becomes

σT=0 =
π

NV
Re

N∑

m,n=1

〈n| J |m〉 〈m| J |n〉 δ (EF − Em) δ (EF − En) , (12)

where En is the energy of the eigenstate |n〉.
An approximation of eigenstates |n〉, or a random superposition of degenerate eigenstates can be obtained by using

the spectrum method [7]. Suppose a random superposition state |ϕ〉 is the initial state of the system. As proved
during the calculation of its spectral function, it contains all the eigenstates and we can, therefore, represent it as
|ϕ〉 =

∑
n An |n〉 . The state at time t is

|ϕ (t)〉 = e−iHt |ϕ〉 . (13)

By performing the Fourier transform directly on |ϕ (t)〉 we get

∣∣∣Ψ̃ (ε)
〉

=
1

2π

∫ ∞

−∞

eiεt · |ϕ (t)〉

=
1

2π

∑

n

An

∫ ∞

−∞

e−i(ε−En)t |n〉

=
∑

n

Anδ (ε − En) |n〉 , (14)

which can be normalized as

|Ψ (ε)〉 =
1√∑

n |An|2 δ (ε − En)

∑

n

Anδ (ε − En) |n〉 . (15)

It is clear that |Ψ (ε)〉 is an eigenstate if it is a singlet state or a random phase superposition of all the degenerate
eigenstates with energy ε. Although |Ψ (ε)〉 is written in the energy basis, the actual basis used to represent the state
|ϕ (t)〉 can be any orthogonal and complete basis, such as the real space used in the tight-binding model of graphene.

By using the quasieigenstates |Ψ (ε)〉 obtained from the spectrum method in Eq. (14), we will prove below that

σ =
ρ (ε)

V

∫ ∞

0

dtRe
[
e−iǫt 〈ϕ| JeiHtJ |ε〉

]

(16)

is approximately equal to σT=0 in the Kubo formula (10), where |ϕ〉 is the same initial random superposition state in
Eq. (13), and

|ε〉 =
1

|〈ϕ|Ψ (ε)〉| |Ψ (ε)〉 . (17)

Eq. (16) is finally used in the numerical calculation. The proof of Eq. (16) reads as follows: First by using the
expression of |Ψ (ε)〉 in Eq. (15) we get

|〈ϕ|Ψ (ε)〉| =

√∑

n

|An|2 δ (E − En), (18)

and

|ε〉 =
1

∑
n |An|2 δ (ε − En)

∑

n

Anδ (ε − En) |n〉 . (19)

Now, the conductivity in Eq. (16) becomes

σ =
1

V

ρ (ε)
∑

n |An|2 δ (ε − En)

∫ ∞

0

dtRe[e−i(ε−Em)t
∑

m,k

A∗
k 〈k|J |m〉 〈m|J

∑

n

Anδ (ε − En) |n〉]

=
π

V

ρ (ε)
∑

n |An|2 δ (ε − En)
Re

∑

m,k,n

AnA∗
k 〈k|J |m〉 〈m|J |n〉 δ (ε − Em) δ (ε − En) .

(20)
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Separating the sum in
∑

m,k,n into two parts with k = n and k 6= n, respectively, we get the conductivity as

σ =
π

V

ρ (ε)
∑

n |An|2 δ (ε − En)
Re

∑

m,n

|An|2 〈n| J |m〉 〈m| J |n〉 δ (ε − Em) δ (ε − En)

+
π

V

ρ (ε)
∑

n |An|2 δ (ε − En)
Re

∑

m,k 6=n

AnA∗
k 〈k| J |m〉 〈m| J |n〉 δ (ε − Em) δ (ε − En) .

(21)

When the sample size N → ∞, as proved in the numerical calculation of the DOS, a RRS |ϕ〉 in the real space

contains all the energy eigenstates with approximately equal probability. Therefore, we have |An|2 ≈ 1/N, ρ (ε) ≈∑
n |An|2 δ (ε − En) , and the second term in above expression is close to zero because of the cancellation of random

complex coefficients AnA∗
k. This finally proves that

σ =
ρ (ε)

V

∫ ∞

0

dtRe
[
e−iεt 〈ϕ| JeiHtJ |ε〉

]

≈ π

NV
Re

∑

m,n

〈n| J |m〉 〈m| J |n〉 δ (ε − Em) δ (ε − En) . (22)

The accuracy of our numerical algorithm to calculate the DC conductivity is mainly determined by the size of the
sample, the time interval and total number of time steps used in the Fourier transform of Eq. (14) and in the integral
in Eq. (16). The main computational limiting factor for the numerical evaluation of Eq. (16) is the amount of the
physical memory available to store |ε〉.
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