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TIGHT-BINDING MODEL

To be able to treat general disorder configurations,
we construct a tight-binding (TB) model which is capa-
ble of describing pristine, fully and partially fluorinated
graphene. To this end, we use a multi-orbital tight-
binding Hamiltonian

H =
∑
αi

εiαni,α +
∑

αβ<ij>

tijαβc
†
i,αcj,β , (1)

where i, j are site indices, α and β label the orbital basis
{carbon : s, px, py, pz fluorine : px, py, pz}, < ij > in-

dicates summation over nearest neighbours and tijαβ are

hopping matrix elements. The exact definition of tijαβ and
the involved direction cosines can be found in Table I and
Table II. The two-center integrals involved in the defini-
tion of the hopping matrix elements are determined by
fitting the TB band structures to ab initio data, which
has been done for pristine and fully fluorinated graphene
separately.
Since it is known, that the bandgap of fluorographene

is underestimated in density functional theory (DFT)
calculations, we use the G0W0 method to include non-
local screened exchange self-energy corrections to the
DFT eigenenergies for both, fluorographene and pristine
graphene[1]. We use the PAW method as implemented
in the VASP code[2] to obtain converged GGA (PBE)
DFT calculations as starting points for the G0W0 calcu-
lations. In all cases a 8 × 8 × 1 k-mesh and an energy
cut off of 400 eV. is used. For pristine graphene we use a
lattice constant of a0 = 2.47 Å. The geometry of fluoro-
graphene (chair configuration, see Fig. 1) has been opti-
mized, which yields a lattice constant of a0 = 2.62 Å, an
out-of-plane displacement of ∆z = ±0.21 Å for each car-
bon atom and a fluorine-carbon-distance of c = 1.38 Å.
The G0W0 calculations included Bloch states up to an
energy of 120 eV in all calculations. The resulting G0W0

quasiparticle energies for graphene and fluorographene
are used to fit the nearest neighbor TB model from Eq.
(1). The resulting parameters for each system can be
found in Table III and the corresponding band structures
and density of states (DOS) can be seen in Fig. 2 and
Fig. 3, respectively. To plot the G0W0 band structure we

Figure 1. Fluorographene in chair configuration (yellow: car-
bon, gray: fluorine)

tss Vssσ

tspx lVspσ

tpxpx l2Vppσ + (1− l2)Vppπ

tpxpy lm(Vppσ − Vppπ)

Table I. Definition of Slater-Koster parameters. Not listed
elements can be obtained by permutation of the indices and
nearest neighbor direction cosines (l,m, n).

interpolate the renormalized quasiparticle energies using
Wannier functions.

It is obvious, that the simple nearest neighbor TB mod-
els are not able to describe every single detail of the orig-
inal band structures. Nevertheless, the most important
features, like the linear dispersion around the Dirac point
in graphene or the states around the conduction and va-
lence band edges in fluorographene are reproduced.

In the case of fluorographene we end up with a band
gap of 6.3 eV, which is about 0.7 eV smaller than recently
published G0W0 calculations[3] for a free standing layer.
Here, adjacent layers are separated by about 10 Å which
is one third of the distance used in Ref. [3]. Therefore,
screening effects due to the Coulomb interaction (W0 in
G0W0) from neighboring slabs are present, which models
an effective dielectric environment and which lowers the
band gap. This effect mimics the influence of a dielectric
substrate with a static dielectric constant of 1.8 in the
long wavelength limit.

To model partially fluorinated graphene, we use a su-
percell in which randomly (or ordered) fluorine atoms are
introduced. Thereby, three different carbon-carbon hop-
ping combinations arise: 1.) nearest neighbor hopping
between pristine carbon atoms (graphene like hopping,
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graphene
δi li mi ni

δ1 0 1 0

δ2 −
√
3/2 −1/2 0

δ3 +
√
3/2 −1/2 0

δF 0 0 0

fluorographene
li mi ni

0 +0.964 -0.265
−0.835 −0.482 -0.265
+0.835 −0.482 -0.265

0 0 1

CFx

li mi ni

0 +0.991 -0.136
−0.856 −0.495 -0.136
+0.856 −0.495 -0.136

0 0 1

Table II. Direction cosines. Here δF denotes the vector of the adjacent upper F atom of the central C atom.
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Figure 2. Wannier interpolated G0W0 (red) and TB (green) band structures of graphene (left) and fluorographene (right).
The dotted line at E = 0 eV illustrates the common reference energy.

denoted by GR in Tab. III), 2.) hopping between two
fluorinated carbon atoms (fluorographene like hopping,
denoted by FGR) and 3.) hopping between a pristine
and a fluorinated carbon atom. Thus, the local environ-
ment has to be considered to choose the correct hoppings
and onsite energies for partially fluorinated graphene. In
the case of a hopping between two unfluorinated carbon
atoms we use the GR labelled column of Tab. III. In the
second case of a hoping between two fluorinated carbon
atoms we use the FGR labelled column and in the third
case, which is about a hopping between an unfluorinated
and a fluorinated carbon atom we just take the arithmetic
mean value of the corresponding values from the GR and
FGR columns together with the CFx direction cosines
from Tab. II. The carbon onsite energies for a partially
fluorinated system are chosen corresponding to the fact,
whether the carbon atom is fluorinated or not. Hence,
special care must be taken to choose the correct onsite
energies or hoppings in the case of partially fluorinated
graphene.
Furthermore, since a common reference energy of pris-

tine and fully fluorinated graphene is a priori not known,
special care must be taken in using the TB onsite en-
ergies in the case of partially fluorinated graphene. We
determine this common reference energy by matching the
ab initio local DOS (LDOS) of a single fluorine impurity
(and its surrounding) with the corresponding LDOS of
the TB model. To this end, we use a relaxed graphene
supercell including 16 carbon atoms with a single fluo-

rine impurity. As in the previous cases we perform a
G0W0 calculation including Bloch states up to an energy
of 120 eV. The ab initio LDOS predicts a midgap state
around the Fermi energy with coinciding maxima of the
surrounding LDOS. We define the Fermi energy of pris-
tine graphene to be at 0 eV, i.e. all single particle energies
are given relative to this Fermi level. Then, all on-site
energies in the TB description of fluorographene are ad-
justed until the impurity induced maxima of the LDOS
obtained from the TB model of the supercell containing
the fluorine impurity on graphene match the G0W0 re-
sults, as can be seen from Fig. 4 and Fig. 3 c). This offset
is included in the parameters given in Tab. III, yielding
correctly aligned on-site energies energies. Thereby, the
Fermi energies in all models are set to 0 eV. The corre-
sponding total DOS of the TB model compared to the
original G0W0 DOS can be seen in the Fig. 3 c). Next
to the valence band, the impurity state is reproduced in
good approximation.

OPTICAL PROPERTIES

The real part of optical conductivity is calculated by
using the Kubo formula in the form [4, 5]

σαβ (ω) = lim
ε→0+

e−βω − 1

ωΩ

∫ ∞

0

e−εt sinωt (2)

×2Im ⟨φ|f (H)Jα (t) [1− f (H)] Jβ |φ⟩ dt,
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Figure 3. Total DOS of the TB models (green) and the ab initio calculations (red). In the case of graphene and fluorographene
the ab initio DOS is calculated using the Wannier constructions shown in Fig. 2, whereas the ab initio DOS of the supercell
shows the original G0W0 data.
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Figure 4. Left: TB pz LDOS of a fluorine impurity in a supercell of 16 carbon atoms together with the corresponding LDOS
of the carbon bonding partner and its nearest neighbor carbon atom using the parameters of Table III. Right: Corresponding
G0W0 results

GR FGR
εs −2.85 −5.54
εpxy +3.20 +2.31
εpz +0.00 +4.92
Vssσ −5.34 −3.65
Vspσ +6.40 +7.20
Vppσ +7.65 +7.65
Vpxypzσ +0.00 +2.20
Vpxypxyπ −2.80 −2.64
Vpxypzπ +0.00 −2.80
Vpzpzπ −2.80 −1.87

εFpxy
−4.94

εFpz −1.69
V C−F
spσ +1.06

V C−F
ppσ +9.85

V C−F
ppπ −2.25

Table III. Two-center integrals involved in the definition of
the Slater-Koster parameters for graphene (GR) and fluoro-
graphene (FGR). The upper panel shows the carbon onsite
energies as well as the carbon-carbon hopings, while the lower
panel shows the the fluor onsite energies and the correspond-
ing carbon-fluor hoppings. All values are given in eV.

where β = 1/kBT is the inverse temperature, Ω is the
sample area, f (H) = 1/

[
eβ(H−µ) + 1

]
is the Fermi-

Dirac distribution operator, |φ⟩ is a random superpo-
sition of all the basis states in the real space, i.e., |φ⟩ =∑

i aic
†
i |0⟩[5, 6] where ai are random complex numbers

normalized as
∑

i |ai|
2
= 1, and |0⟩ is the electron vac-

uum state. The time-dependent current operator in the
α (= x,y or z) direction is Jα (t) = eiHtJαe

−iHt. The
time-evolution operator e−iHt and the Fermi-Dirac distri-
bution operator f (H) are computed with the Chebyshev
polynomial method [5]. Here we use units that ~ = 1.

The density of state is obtained by the Fourier trans-
form of the overlap between the time-evolved state |φ(t)⟩
and the initial state |φ⟩ as[5, 6]

ρ (ε) =
1

2π

∫ ∞

−∞
eiεt ⟨φ|φ(t)⟩ dt. (3)

All along this work, we fix the temperature to T =
300K. We use periodic boundary conditions in the calcu-
lations for both the optical conductivity and the density
of states, and the size of the system is 2400 × 2400 unit
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cells.

Dipole Contribution in Optical Conductivity

For the TB Hamiltonian H, the current operator is

J = e
·
R = ie [H,R] ,where R = R1 + R2 is the dipole

operator and R1=
∑

i ric
+
i,αci,α the regular term and

R2 =
∑

i,α,β ⟨i, α|δr|i, β⟩ c
+
i,αci,β the inter atomic term.

We have

[H,R1] = −
∑

i,j,α′,β′

tijα′β′ (rj − ri) c
+
i,α′cj,β′,

[H,R2] = −
∑
i,j

∑
α,β,γ

[
tijαγ ⟨γ|δr|β⟩

− tijγβ ⟨α|δr|γ⟩
]
c+i,αcj,β (4)

By neglecting the overlap from different sites, the
nonzero dipole term for fluorinated graphene is given by

[H,R2] = −
∑

i,α=px,py,pz

[(εi,s − εi,α) ⟨s|δr|α⟩ c+i,sci,α

+(εi,α − εi,s) ⟨α|δr|s⟩ c+i,αci,s],(5)

where εi,α denotes the corresponding onsite energies and
s the carbon s orbital.

Complete Spectrum of the Optical Conductivity

Fig. 5 shows the complete spectrum of the in-plane and
out-of-plane conductivity of fluorinated graphene with
randomly distributed unpaired or paired fluorine atoms.
Unlike the energy range (ω < 10 eV), shown in Fig. 1
of the main text, the optical conductivity at higher en-
ergies are highly enhanced due to the presence of fluo-
rine adatoms. The paired and unpaired configurations
are clearly distinguishable in the out-of-plane conductiv-
ity between 20 and 25 eV: two peaks centered about 21
and 22.7 eV exist for partially fluorinated graphene with
paired adatoms, which are missing in the unpaired case.

EFFECT OF RANDOMNESS AND SAMPLE SIZE

The accuracy of our numerical methods in the TB cal-
culation of optical conductivity and density of states is
mainly controlled by the sample size, and a larger sam-
ple leads to better results (see more details in Ref. 5 and
6). For a system as large as the one used in our simula-
tions (2400 × 2400), one random configuration of disor-
dered system includes different kinds of local structures,
therefore it is not necessary to average the results from

different random configurations, or use even larger sam-
ple. That is, the numerical results are no longer sensitive
to the randomness of the structure or the sample size.
For example, as the results shown in Fig. 6, we consider
partially fluorinated graphene with fixed concentration
of fluorine atoms, but change the configuration of oc-
cupied sites according to different random sequences, or
use larger sample size (3600 × 3600). In each case the
randomly occupied sites are totally different, but the nu-
merical results are consistent. This is a direct proof that
our result is not only valid for a particular “random”
configuration but valid in general. It contains an aver-
age from different kinds of local structures, and does not
depend on the choice of random sequence if the system
size is large enough.

REAL SPACE DISTRIBUTION OF MIDGAP
STATES

For disordered partially and fully fluorinated graphene
without carbon vacancies, the calculation of quasi-
eigenstates shows that the dominating orbitals in the
midgap states are carbon pz orbitals. The quasi-
eigenstate |Φ(E)⟩, which is a superposition of the de-
generate eigenstates with the same eigenenergy E, is ob-
tained as the Fourier transform of |φ(t)⟩, i.e. |Φ(E)⟩ =
1
2π

∫∞
−∞ dteiEt |φ (t)⟩ . The quasi-eigenstate is not exactly

an energy eigenstate, but rather an approximation to
it[5]. However one can still use the real space distribu-
tion of the amplitude to examine the localization of the
modes [5]. In Fig. 7, we show the impurity states in real
space. Probability distributions projected onto the car-
bon pz orbitals are shown for midgap states in partially
fluorinated graphene with different types of structural
disorder. The results indicate that the midgap states are
all quasilocalized around the unfluorinated carbon atoms
near the fluorinated sites, except for the cases with paired
fluorine atoms.

For fully fluorinated graphene with carbon vacancies,
the dominating orbitals of the midgap states around the
energy peak at E = 0.9 eV are carbon px and py orbitals
(see the orbital components in the left panel of Fig. 8),
quasilocalized around the vacancies (see the real space
distribution of carbon py orbital in the right panel of
Fig. 8).

∗ s.yuan@science.ru.nl
[1] Actually simple DFT calculations would describe the

graphene band structure accurate. But to handle both
parts of the model on the same footing we used the G0W0

method for graphene as well.
[2] G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6,

8245 (1994).
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Figure 5. (a,b) In-plane and (c,d) out-of-plane optical conductivity of partially and fully fluorinated graphene with different
concentration of randomly distributed unpaired (left panels) or paired (right panels) fluorine adatoms.
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Figure 6. DOS and optical spectrum of partially fluorinated graphene (CF0.1) with different configuration of random distributed
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Figure 7. Real space distribution of carbon Pz orbital of midgap states for partially fluorinated graphene, with different types
of structure disorder.
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