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Plasmon confinement in fractal quantum systems
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Recent progress in the fabrication of materials has made it possible to create arbitrary nonperiodic two-
dimensional structures in the quantum plasmon regime. This paves the way for exploring the quantum plasmonic
properties of electron gases in complex geometries. In this work we study systems with a fractal dimension. We
calculate the full dielectric functions of two prototypical fractals with different ramification numbers, namely the
Sierpinski carpet and gasket. We show that the Sierpinski carpet has a dispersion comparable to a square lattice,
but the Sierpinski gasket features highly localized plasmon modes with a flat dispersion. This strong plasmon
confinement in finitely ramified fractals can provide a novel setting for manipulating light at the quantum level.
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I. INTRODUCTION

Nowadays, different experimental techniques allow for
the creation of arbitrary nonperiodic two-dimensional (2D)
lattices. For example, artificial lattices can be created by
manipulation of molecules on a conducting surface [1,2],
or by arranging quantum dots into any custom shape [3,4].
More generally, nanolithography methods can be used to make
high-quality 2D structures of arbitrary shape with a resolution
in the order of tens of nanometers [5]. Other methods, such
as molecular self-assembly [6,7], have been used to grow
Sierpinski gaskets. This presents an opportunity to experimen-
tally study condensed matter systems with complex geometries
embedded in two dimensions.

The physical properties of 1D and 2D systems have been
studied extensively [8,9]. In this work however, we set out to
study fractals—systems characterized by a noninteger Haus-
dorff dimension dH . Moreover, fractals have no translational
invariance, so where a Bloch description is natural in the case
of periodic lattices, here it is not possible. Still, the Schrödinger
equation has been solved analytically on some simple fractals
with finite ramification [10]. For others, like the Sierpinski
carpet, no analytical expressions for eigenenergies and eigen-
states have been found yet. The latter systems are better
tackled numerically [11]. It has been shown that the quantum
conductance of Sierpinski carpets exhibits fractal fluctuations
[12] and that their optical conductivity features sharp peaks due
to electronic state pairs at characteristic length scales present
within the carpet [13]. However, its plasmonic properties have
not been investigated yet.

Historically, in most plasmonic devices, the Fermi wave-
length of the electrons was much smaller than the plasmon
wavelength which is of the order of the geometric size of the
system for standing waves. In other words, the characteristic
plasmon wave vector q � kF , where kF is the Fermi wave
vector. In this regime, plasmons can be described classically
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and there is no need to use a quantum mechanical approach
[9,14–16].

Recently, due to the progress in nanodevice fabrication, the
quantum regime for plasmons has been reached [17,18]. In this
regime, localized surface plasmons make it possible to confine
light to scales much smaller than the scales of conventional
optics, and as such provide a unique way for light manipulation
on scales below the diffraction limit. Surface plasmons have
found applications in surface-enhanced spectroscopy [19,20],
biological and chemical sensing [21], lithographic fabrication
[22], and photonics [23].

However, the theory of inhomogeneous quantum electron
plasma, even in the simplest random-phase approximation
(RPA) [9,14–16], is quite complicated due to the essential
nonlocality of the dielectric function [16]. Recently, a rigorous
scattering theory of plasmons by obstacles was built [24],
but finding plasmon eigenmodes of inhomogeneous quantum
systems still remains a challenge. As a matter of fact, this
problem is very old, starting with the early considerations
[25,26] of “atomic plasmons” [27–31] which eventually turned
out to not exist [32,33]. Previous attempts use additional
uncontrollable approximations such as truncation of quantum
states [31], semiclassical [27,30,33], or even classical [29]
approaches.

Here we will present the results of accurate, straightforward
calculations of plasmon spectra in an inhomogeneous quantum
system with nontrivial geometry, namely Sierpinski carpets
and gaskets, two prototypic examples of infinitely and finitely
ramified fractals, respectively. These two types of fractals can
have widely different properties. For example, it has been
found that infinitely ramified fractals exhibit phase transitions
not present in finitely ramified fractals [34].

In this work first we outline the methods used and present
a numerical method for calculation of plasmonic properties
of systems with no translational invariance that is applicable
to arbitrary geometries. Then we discuss the results of these
calculations on fractal systems. We compare the plasmon
dispersions of the Sierpinski carpet and gasket to those of a
square and triangle, respectively.
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FIG. 1. The fractals considered in this paper. (a) A third iteration
Sierpinski carpet. The width of the sample is 33 = 27 lattice constants,
or approximately 6.6 nm. (b) A fifth iteration Sierpinski gasket. Its
width is 25 = 32 lattice constants (7.9 nm). The previous iterations
are indicated in red.

II. METHODS

We consider a system described by a tight-binding Hamil-
tonian

Ĥ = −t
∑
〈a,b〉

ĉ
†
aĉb, (1)

where t is the hopping parameter. Here we have taken
the on-site potential to be zero and only consider nearest-
neighbor hoppings. The two systems of interest are illustrated
in Fig. 1.

Fractals are made using an iterative process. For example,
to make the Sierpinski carpet, a previous iteration (indicated
in red in Fig. 1) is copied N = 8 times to make a next iteration
that is L = 3 times wider. The Hausdorff dimension is then
given by dH = logL N . It describes the scaling behavior of the
fractal, and gives a measure of how space filling it is. For the
carpet dH ≈ 1.89, for the gasket dH ≈ 1.58.

Moreover, for each fractal we can define a ramification num-
ber, giving a measure of how connected it is. The Sierpinski
carpet is infinitely ramified: as a higher iteration is taken, the
number of bonds that need to be cut to separate it from a lower
iteration goes to infinity. In contrast, the Sierpinski gasket is
finitely ramified.

We use a hopping parameter t = 2.8 eV and a lattice
constant a = 0.246 nm. These are the parameters for graphene,
and they are representative for 2D systems in general. Choosing
a different lattice constant will lead to a different plasmon
spectrum, but the same qualitative behavior.

Using this tight-binding model we obtain the exact eigen-
states |i〉 with corresponding eigenenergies Ei , to use for the
calculation of the dielectric function.

The dielectric function operator ε̂(ω), by definition, relates
the external potential V̂ext(ω) to the total potential V̂ :

〈r|V̂ext(ω)|r〉 =
∫

ddr ′ 〈r|ε̂(ω)|r′〉〈r′|V̂ |r′〉. (2)

d is the dimension of our problem. For the systems
considered here d = 2. Treating V̂ as a perturbation,
within RPA, the dielectric function may be expressed as

follows [16]:

〈r|ε̂(ω)|r′〉 = 〈r|r′〉 −
∫

ddr ′′〈r|V̂C|r′′〉〈r′′|χ̂(ω)|r′〉,

〈r|V̂C|r′′〉 ≡ e2

‖r − r′′‖ ,

〈r′′|χ̂ (ω)|r′〉 = gs lim
η→0+

∑
i,j

〈i|Ĝ|j 〉〈j |r′′〉〈r′′|i〉〈i|r′〉〈r′|j 〉,

〈i|Ĝ|j 〉 ≡ ni − nj

Ei − Ej − h̄(ω + iη)
. (3)

|r〉 denotes a position eigenvector, V̂C is the Coulomb inter-
action potential, χ̂(ω) is the polarizability function, η is the
inverse relaxation time, gs = 2 is spin degeneracy, and ni is
the ith energy level occupational number according to the
Fermi-Dirac distribution

ni = 1

e(Ei−μ)/kT + 1
. (4)

We used room temperature T = 300 K and an inverse relax-
ation time η = 6 meV/h̄.

Equations (3) allow us to exactly calculate the full dielectric
function ε̂(ω) of any tight-binding system without translational
invariance. The open source project documentation [35] lists
the computational techniques employed which, despite the
O(N4) algorithmic complexity, make calculations possible for
systems of up to several thousands of sites.

To visualize the plasmon modes in a quantum mechanical
system Wang et al. [36] introduced the following method.
Consider the dielectric function in its spectral decomposition:

ε̂(ω) =
∑

n

εn(ω)|φn(ω)〉. (5)

In this method, for each ω, we consider only the eigenvalue
εn1(ω)(ω) that has the highest value of − Im[1/εn(ω)], which
gives us the plasmon eigenmode |φn1(ω)(ω)〉 that contributes
most to the loss function.

However, it is not clear how to access these plasmon
modes experimentally. Currently, the standard way of probing
plasmon properties of small quantum mechanical systems is
electron energy loss spectroscopy (EELS). The fact that we
calculate the full dielectric function gives us the possibility to
calculate the following Fourier transform, which distinguishes
this study from others:

〈q|ε̂(ω)|q〉 = 1

(2π )d

∫
ddr

∫
ddr ′ 〈r|ε̂(ω)|r′〉 e−iq(r−r′).

(6)
The loss function − Im[1/〈q|ε̂(ω)|q〉] is then directly measur-
able using EELS techniques [9,14–16,37].

Formally, there are two ways of identifying plasmons. A
plasmon frequency is either given by a local maximum of the
loss function − Im[1/εn1(ω)(ω)], or by a frequency at which
Re[εn1(ω)(ω)] = 0. These frequencies are not exactly equal due
to Landau damping, which is quantified by η [38].

III. RESULTS

The real-space loss function of the highest contributing
plasmon mode is shown in Fig. 2. It shows that there is a large
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FIG. 2. The highest contribution to the loss function
− Im[ε−1

n1(ω)(ω)]. (a) The loss function for the entire range of
frequencies, in the case of (blue) a third iteration Sierpinski carpet
and (green) a sixth iteration Sierpinski gasket. (b) The loss function
of a third iteration Sierpinski carpet for a frequency interval
0.14t < h̄ω < 0.24t . Inset: Re[εn1(ω)(ω)] for a frequency interval
0.21t < h̄ω < 0.24t , showing discontinuities. Red dots indicate pairs
of points between which Re[εn1(ω)(ω)] crosses zero in a continuous
manner.

number of plasmon frequencies, and that the associated losses
increase with increasing frequency. At each discontinuity in
Re[εn1(ω)(ω)] a different mode is found to be the highest
contributor to the loss function. Such a discontinuity is not
associated with a plasmon, even though Re[εn1(ω)(ω)] switches
sign.

The real part of the highest contributing plasmon eigen-
modes for both the carpet and gasket are shown in Fig. 3.
For further analysis, the inverse participation ratio IPR(ω) =∫

ddr|〈r|φn1(ω)〉|4 can give us a measure of localization. The
average IPR of |φn1(ω)〉 was found to be an order of magnitude
higher for the gasket than for the carpet. This can be seen as a
consequence of the finite ramification of the gasket, i.e., the fact
that it is less connected, and therefore the electrons are more
confined and exhibit more localized plasmon eigenmodes.
Figure 3(d) shows an example of such a highly localized mode.

We now turn to the Fourier transform of the real-space loss
function in order to make a comparison to EELS experiments.
Figure 4 shows the loss function as function of both q and ω.

There is a close resemblance between the carpet [Fig. 4(a)]
and a square sample [Fig. 4(b)]. The dispersion of the carpet
has extra broadening, similar to the broadening found in
systems with disorder [39]. However, generally speaking, both
curves look like a regular ε(ω) ∝ √

q dispersion relation for
surface plasmons [9]. The carpet exhibits no translational
invariance, i.e., q is not actually a good quantum number, so
this behavior is quite remarkable. The dispersion of the fourth
iteration Sierpinski carpet is already very close to the third

FIG. 3. The highest contributing plasmon eigenmodes in real
space. A few examples of the real space distribution Re[〈r|φn1(ω)(ω)〉]
of plasmon modes, where red represents a positive value and blue
represents a negative value, for (a) and (b) a third iteration Sierpinski
carpet and (c) and (d) a sixth iteration Sierpinski gasket. Eigenmodes
exhibiting different characteristic length scales are shown.

iteration dispersion. This convergence indicates that the result
is representative for the real fractal at infinite iteration.

For the Sierpinski gasket [Fig. 4(c)] we observe different
behavior. This fractal does not closely follow the dispersion

FIG. 4. Dispersion relation − Im[1/〈q|ε̂(ω)|q〉], showing the fre-
quency and momentum dependency of the loss function. Momentum
was taken along the x axis. (a) A square built out of square lattice
as compared to (b) the fourth iteration Sierpinski carpet. Similarly,
(c) a triangle built out of triangular lattice as compared to (d) a sixth
iteration Sierpinski gasket. The maximum of the left-hand side is
plotted as a dashed white line on the right-hand side.
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relation of a triangle built out of a triangular lattice [Fig. 4(d)].
Instead, we can clearly see the formation of modes with a
nearly flat dispersion, which means that they are localized, as
the Fourier transform of the dielectric function is only weakly
dependent on q. Again, this result is reasonably converged.

IV. DISCUSSION

Concluding, in this work we have calculated the plasmon
dispersion for the Sierpinski carpet and Sierpinski gasket.
The Sierpinski carpet has a plasmon dispersion comparable
to the dispersion of a square lattice, whereas the gasket
exhibits highly localized plasmon modes. More generally, a
finitely ramified fractal can exhibit strong plasmon confine-
ment, providing a novel setting for the manipulation of light
at the quantum scale. With current experimental techniques,
these results can be probed experimentally. Moreover, we

have presented a rigorous approach for calculating plasmonic
properties of generic tight-binding systems, published as an
open source software project [35]. We believe that this code
can be very useful for future projects relating to plasmonic
properties of nontranslationally invariant systems.
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