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Out-of-plane vibrations are considered as the dominant factor limiting the intrinsic carrier mobility of
suspended two-dimensional materials at low carrier concentrations. Anharmonic coupling between in-plane and
flexural phonon modes is usually excluded from the consideration. Here we present a theory for electron-phonon
scattering, in which the anharmonic coupling between acoustic phonons is systematically taken into account.
Our theory is applied to the typical group V two-dimensional semiconductors: hexagonal phosphorus, arsenic,
and antimony. We find that the role of the flexural modes is essentially suppressed by their coupling with in-plane
modes. At dopings lower than 1012 cm−2 the mobility reduction does not exceed 30%, being almost independent
of the concentration. Our findings suggest that compared to in-plane phonons, flexural phonons are considerably
less important in the electronic transport of two-dimensional semiconductors, even at low carrier concentrations.
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I. INTRODUCTION

Charge carrier transport in two-dimensional (2D) materi-
als is different from their three-dimensional analogs [1,2].
Among other reasons [3,4], this is mainly related to the
existence of the flexural phonon modes (out-of-plane vibra-
tions), whose energy dispersion is quadratic in wave vector
compared to the linear dispersion of conventional (in-plane)
modes [1,5,6]. As the charge carrier scattering on phonons is
the main factor limiting the intrinsic mobility, understanding
of the interplay between flexural and in-plane phonons is of
vital importance for 2D material’s electronic transport.

The contributions of in-plane and flexural phonons are
usually considered independently of each other at the level
of the harmonic approximation. Moreover, the role of flexural
phonons is often completely neglected [7–9], assuming that
their contribution is suppressed by the presence of a substrate
[10]. At the same time, flexural phonons are considered to
play the dominant role in the electron-phonon scattering of
free-standing graphene [11–13] and may contribute signifi-
cantly in the presence of a dielectric substrate [14,15]. Trans-
port properties of conventional 2D semiconductors like black
phosphorus are less affected by flexural modes in the regime
of high doping [16], whereas at low dopings the situation
is unclear. Furthermore, flexural modes could significantly
renormalize the electronic spectrum, leading to the formation
of bound states [17,18].

The separation between the in-plane and flexural modes
becomes undefined at wave vectors q � q∗, smaller than the
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characteristic vector q∗ =
√

3TY/16πκ2, determined by the
Young modulus Y , flexural rigidigy κ , and temperature T
[6,19,20]. This is a manifestation of the anharmonic cou-
pling regime, which is typical to low carrier concentrations
with small Fermi wave vectors, kF � q∗. In this situation,
the electron-phonon interaction for flexural modes diverges
and is usually cut off. Several attempts have been made
to systematically account for the anharmonic effects in the
transport properties of graphene [13,21–23]. However, only
little attention to this problem has been given in the context of
conventional semiconductors [24]. Despite the availability of
advanced ab initio computational techniques developed to de-
scribe electron-phonon scattering [25–28], their applicability
is limited with respect to the above-mentioned effects.

Group V elemental semiconductors is an emerging class
of 2D materials with attractive electronic properties [29,30].
Hexagonal (A7) 2D phases of phosphorus (P), arsenic (As),
and antimony (Sb) are among the most recent materials fabri-
cated experimentally [31–33]. Apart from being mechanically
stable [34,35], they are proposed to have excellent electron
transport characteristics [36,37] and a high degree of gate
tunability [38–40] due to the buckled crystal structure. Me-
chanically, these materials are highly flexible with the flexural
rigidities in the range 0.3–0.8 eV [34,41], which is signif-
icantly smaller compared to graphene [42]. This property
allows us to expect a considerable anharmonic coupling in
these materials, and its possible influence on the electron
transport properties.

In this paper, we focus on a theory for phonon-mediated
charge carrier scattering in 2D semiconductors taking the
coupling between the acoustic phonons into account. We use
the diagrammatic approach to calculate the anharmonic con-
tribution to the electron-phonon scattering rate, ending up at
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two plausible approximations. We apply the developed theory
to calculate electron and hole mobilities in three representative
group V isotropic semiconductors: hexagonal monolayers P
(also known as blue phosphorene), As (arsenene), and Sb (an-
timonene). To this end, we estimate relevant model parameters
from first-principles density functional theory (DFT) calcula-
tions. We find that although flexural phonons tend to reduce
the mobility at concentrations below 1014 cm−2 by 15–30%,
their effect reaches its maximum at around 1012 cm−2. At
lower dopings, the mobility becomes essentially independent
of the concentration, being the manifestation of the anhar-
monic coupling between the flexural and in-plane phonon
modes.

The paper is organized as follows. In Sec. II, we present
a theory of charge carrier scattering in 2D semiconductors,
explicitly considering in-plane and out-of-plane phonons,
as well as their anharmonic coupling. In Sec. III, we use
first-principles calculations to estimate model parameters for
hexagonal P, As, and Sb monolayers. The results of numerical
calculations are presented in Sec. IV, where we investigate the
interplay between in-plane and flexural phonons in the context
of charge carrier scattering, as well as estimate upper limits
for the carrier mobility in the materials under consideration.
In Sec. V, we summarize our results, and conclude the paper.

II. THEORY

A. Carrier mobility and relaxation time

Carrier mobility of isotropic electron gas can be expressed
as μc = σ/ne, where n is the carrier concentration and σ is
the dc conductivity, which has the form [43]

σ = e2

2S

∑
k

τkv
2
k

[
−∂ f (εk )

∂εk

]
. (1)

Here S is the sample area, εk is the band energy, vk is
the group velocity, τk is the momentum-dependent scattering
relaxation time, and f (εk ) = {1 + exp[(εk − μ)/T ]}−1 is the
Fermi-Dirac distribution function. The energy dispersion of
charge carriers is assumed to have the following form near the
band edge:

εk = ε0 + h̄2(k − k0)2

2m
, (2)

where m is the electron (me) or hole (mh) effective mass and
ε0 and k0 are the energy and wave vector determining the
position of band edges, respectively. The chemical potential
μ can be determined from the carrier concentration n as

μ = T ln

[
exp

(
2π h̄2n

gvgsmT

)
− 1

]
, (3)

where gvgs is the valley-times-spin-degeneracy factor. In turn,
one can recast Eq. (1) in the form,

σ = gvgse2τ

4π h̄2

{
μ + 2T ln

[
2cosh

( μ

2T

)]}
, (4)

which in the limit T → 0 transforms into the standard conduc-
tivity formula σ = ne2τ/m. Here we assume the relaxation
time to be averaged over thermally broadened Fermi surface

states τ ≡ 〈〈τk〉〉FS, which is dependent on the chemical po-
tential μ and temperature T .

The corresponding expression for τ can be obtained from
the variational solution of the isotropic Boltzmann transport
equation [43], yielding

1

τ
= 2π

h̄S

∑
kk′

[
− ∂ f (εk )

∂εk

]
δ(εk − εk′ )(1 − cosθkk′ )〈|Vkk′ |2〉∑

k

[
− ∂ f (εk )

∂εk

] ,

(5)

where k = k′ + q with q being the scattering wave vec-
tor, Vkk′ is the effective electron-phonon scattering potential
defined in Sec. II B, and 〈...〉 = Tr(e−βH ...)/Tr(e−βH ) with
β = 1/T denotes thermal averaging over the phonon states
with the Hamiltonian H defined below. In Eq. (5), emission
and absorption of phonons are not explicitly involved in the
energy conservation law, which assumes elastic scattering,
i.e., h̄ωkF � εF with ωkF being the phonon frequency at the
Fermi wave vector. This condition is satisfied for acoustic
phonons considered in our study. After some algebra, Eq. (5)
can be rewritten in a more convenient form as follows:

τ−1 = m

2π h̄3 f (0)

∫ ∞

0
dε

[
−∂ f (ε)

∂ε

] ∫ 2k

0

dq q2〈|Vq|2〉
k2

√
k2 − q2/4

,

(6)

where k = √
2mε/h̄ plays the role of the Fermi wave vector at

μ � T . We note that Eq. (6) is only valid for conventional 2D
semiconductors with quadratic dispersion of charge carriers.
Deviations from the quadratic dispersion, as well as the pres-
ence of a dielectric environment (e.g., substrates), could result
in a considerable modification of the energy dependence of the
scattering rate (see, e.g., Refs. [44–46]).

B. Electron-phonon scattering

Here we first define the scattering potential. We restrict
ourselves to the long-wavelength limit and take both in-plane
and out-of-plane (flexural) phonon modes into account. We
assume that electrons interact with phonons through the de-
formation potential of the form

V (r) = guαα (r), (7)

where

uαβ (r) = 1
2 [∂αuβ (r) + ∂βuα (r) + ∂αh(r)∂βh(r)] (8)

is the strain tensor and g is the coupling constant, whereas
uα (r) and h(r) are in-plane and out-of-plane displacement
fields, respectively.

The form of the deformation potential in Eq. (7) is justified
by the following considerations. In the absence of substrates
or external tension, the electronic structure is invariant under
rotations of the crystal as a whole in three-dimensional space
[47]. Therefore, V (r) must be invariant under the following
transformations:

uα (r) → uα (r) − δϕαh(r)

h(r) → h(r) + δϕα[rα + uα (r)]. (9)

To lowest order in ∂αuβ (r) and ∂αh(r), this implies that V (r)
can only depend on the components of the strain tensor, which
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are scalar quantities under the transformation in Eq. (9) [48].
In principle, V (r) can depend on all components of uαβ (r).
Here we assume the isotropic form in Eq. (7) for simplicity.
Notice that, as a consequence of rotational invariance, in-
plane and out-of-plane coupling constants in Eq. (7) are not
independent [47,49].

In view of the absence of horizontal mirror (σh) symmetry
in buckled hexagonal semiconductors (D3d point group) being
studied in this work, Eqs. (7) and (8) require additional
justification. Particularly, as has been shown in Ref. [24],
single-phonon processes associated with flexural modes are
highly relevant for non-mirror-symmetric 2D Dirac materials
like silicene and germanene. Such processes correspond to
additional terms in Eq. (7) that are linear in out-of-plane
displacements, i.e., ∇h. However, in our case those terms
are irrelevant for the following reasons. Here we are fo-
cused on lightly doped semiconductors with quadratic energy
dispersion represented by Eq. (2). Moreover, the intervalley
scattering can be neglected because kF � k0. Under these
assumptions, it is obvious from in-plane symmetry that ∇h
terms can only enter the interacting potential via the transfor-
mation k0 → k0 + α∇h. However, such terms are forbidden
by rotational symmetry in three-dimensional space. This con-
sideration does not forbid the appearance of higher-gradient
terms in the deformation potential. As can be shown, ∇2h
terms are forbidden, too, which follows from the combination
of inversion and time-reversal symmetry, particularly because
k0 → −k0. On the other hand, ∇3h and higher terms acquire
additional power of phonon wave vector q in comparison to
∇u terms, and since |q| � 2kF , such terms have smallness in
electron concentration and, therefore, can be neglected.

Let us now evaluate the scattering probability 〈|Vq|2〉. The
Fourier transform of the scattering potential V (r) is then given
by

Vq = igqαuα (q) + g

2
fαα (q), (10)

where uα (q) are the Fourier components of the in-plane
displacement field uα (r) and fαβ (q) = −S− 1

2
∑

k kα (qβ −
kβ )hkhq−k is the Fourier transform of fαβ (r) = ∂αh(r)∂βh(r).
In the long-wavelength limit, fluctuations of the displacement
fields are described by the Hamiltonian [19,20,50]

H = 1

2

∫
dr

{
κ[∇2h(r)]2 + λu2

αα (r) + 2Gu2
αβ (r)

}
, (11)

where λ and G are the Lamé parameters. We assume that
fluctuations of the displacement fields can be described classi-
cally. Neglecting quantum effects is fully justified at not-too-
small temperatures, when h̄ω(kF ) � T . In the calculation of
the thermal average 〈|Vq|2〉, we can take advantage of the fact
that the Hamiltonian in Eq. (11) is quadratic with respect to
the in-plane displacement fields uα (r), which allows one to
integrate them out exactly [19,20,50]. After some algebraic
manipulations [19,20], we obtain the following expression for
the scattering matrix (see the Appendix for details):

〈|Vq|2〉 = g2 T

Y
(1 − ν2) + g2 (1 − ν)2

4
〈 f T (q) f T (−q)〉, (12)

where ν = λ/(λ + 2G) is the 2D Poisson ratio and Y =
λ(1 − ν2)/ν. Being focused on the processes with small

momentum transfer q = k − k′, we ignored the effect of the
wave-function overlap between the initial k and final k′ states,
which might lead to some overestimation of the scattering
probability. In Eq. (12), the first term coincides with the usual
contribution of in-plane phonons in the harmonic approxi-
mation, whereas the second term describes both out-of-plane
and cross interactions generated by anharmonic coupling;
f T (q) ≡ (δαβ − qαqβ/q2) fαβ (q) denotes the transverse part
of fαβ (q). In what follows, we use two different approxima-
tions to calculate the correlation function 〈 f T (q) f T (−q)〉.

1. Wick decoupling approximation

In the first approximation, we assume the validity
of the Wick theorem, which yields 〈hkhq−khk′h−q−k′ 〉 

(δk,q+k′ + δk,−k′ )〈hkh−k〉〈hk−qhq−k〉 [1]. In terms of dia-
grams, this assumption corresponds to the neglect of vertex
contributions to the two-particle Green’s function. In this
approximation, the desired correlation function reads:

〈 f T (q) f T (−q)〉 
 �(q)

≡ 2
∫

d2k
(2π )2

[
(q × k)2

q2

]2

G(k)G(q − k) ,
(13)

where G(q) ≡ 〈hqh−q〉 is the single-particle correlation func-
tion of out-of-plane fields. The function �(q) exhibits a
crossover from a harmonic behavior for q � q∗ to an anoma-
lous scaling behavior for q � q∗, which is controlled by
anharmonic interactions. In this work, we addressed the cal-
culation of �(q) within the self-consistent screening approx-
imation (SCSA) [50,51]. In the limit of large and small wave
vectors, �(q) behaves asymptotically as:

�(q) =
{

3
8π

T 2

κ2q2 , q � q∗

C
(

T
κ

)2−η( κ
Y

)η
q−2+2η, q � q∗ , (14)

where η is an universal exponent and C is a dimensionless
constant. The value of η is close to 0.821 within the SCSA, in
the physical case of two-dimensional membranes embedded
in three-dimensional space. Through a numerical solution
of the SCSA equations [50,51], we determined �(q) for
arbitrary values of the wave vector, including the intermediate
scale q 
 q∗ and we obtained the value C 
 2.60 for the
dimensionless amplitude in Eq. (14).

2. Screening approximation

In the second approximation, we consider the following
expression for the correlation function:

〈 f T (q) f T (−q)〉 
 �(q)

1 + Y
4T �(q)

. (15)

Equation (15) can be derived diagrammatically by summing
a geometric series of polarization bubble diagrams connected
by bare interaction lines, the same diagrams which determine,
within the SCSA, the screened interaction between flexural
phonons [50,51]. An expression equivalent to Eq. (15) is
reported in Ref. [47].
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Adopting Eq. (15), one arrives at the following asymptotic
limits for the correlation function:

〈 f T (q) f T (−q)〉 =
{

3
8π

T 2

κ2q2 , q � q∗

4T
Y − 16

C
T 2

κ2

(
TY
κ2

)−2+η
q2−2η, q � q∗

As expected, the two approximations result in the same
behavior at q � q∗, while the result at q � q∗ is different.
In the Wick decoupling approximation, the electron-phonon
coupling 〈|Vq|2〉 scales as 1/q2−2η for small q and it diverges
in the limit q → 0, although the divergence is slow, because
the exponent η is not very different from 1. By contrast, in
the screening approximation 〈|Vq|2〉 approaches the constant
value 2g2 T

Y (1 − ν) for q → 0. This expression ensures that, in
the screening approximation, scattering on in-plane phonons
always gives a larger contribution than scattering on out-of-
plane phonons. In the discussion below, the two approxima-
tions will be considered as the upper and lower limits for the
relaxation time.

The expressions presented above allow one to estimate
the dc conductivity (or mobility) of isotropic 2D electron
gas in the presence of elastic scattering on acoustic phonons.
Importantly, this approach is equally valid for small carrier
concentrations, where scattering involves the coupling be-
tween phonons modes.

III. ESTIMATION OF MATERIAL CONSTANTS

A. Calculation details

To estimate material constants, we use first-principles DFT
calculations. All calculations have been carried out using the
projected augmented-wave [52] formalism as implemented
in the Vienna ab initio simulation package (VASP) [53–55].
To describe exchange-correlation effects, we employed the
gradient-corrected approximation in the parametrization of
Perdew-Burke-Ernzerhof [56]. An energy cutoff of 500 eV
for the plane waves and the convergence threshold of 10−9 eV
were used in all cases. To avoid spurious interactions between
the cells, a vacuum slab of 50 Å was added in the direction
perpendicular to the 2D sheet. Structural relaxation including
the optimization of in-plane lattice constants was performed
until the forces acting on atoms were less than 10−3 eV/Å.
Unlike the cases of P and As monolayers, spin-orbit interac-
tion in monolayer Sb is important [57] and, therefore, has been
taken into account.

Hexagonal monolayers studied in this work adopt honey-
comb structure with vertically displaced (buckled) sublattices.
We obtained the following optimized values of the lattice
constant (a) and buckling parameter: 3.28 Å and 1.24 Å for
P, 3.61 Å and 1.40 Å for As, 4.12 Å and 1.64 Å for Sb,
respectively. Primitive hexagonal cells were used in most of
the calculations, for which a Monkhorst-Pack [58] �-centered
(32 × 32) mesh was adopted to sample the Brillouin zone. To
calculate the Poisson ratio and Young modulus, a rectangular
(
√

3/2 × 1)a unit cell was used, together with a (32 × 24)
k-point mesh. To induce flexural deformations needed for
the calculation of flexural rigidities, we considered rectangu-
lar (6

√
3 × 1)a supercells, such that the deformation period

amounts to l = 6
√

3a ∼ 40 Å for each system considered. We
first apply a field of 1D sinusoidal out-of-plane deformations
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FIG. 1. Blue: DFT band structure calculated along high-
symmetry directions of the Brillouin zone for P [(a)–(d)], As [(e) and
(f)], and Sb [(g) and (h)] monolayers. Red: Band edges fitted within
the effective mass approximation [Eq. (2)]. Due to the degeneracy of
VBM in case of As (g), two values are given for mh, corresponding
to light (mh

lt) and heavy (mh
h) holes. For all three systems considered,

two types of electron effective masses are provided: longitudinal (ml )
and transverse (mt ). The same distinction applies to the hole effective
mass of P monolayer [(a) and (b)].

in the form h(x, y) = h sin(qx) to each system, where h the
deformation amplitude and q = 2π/l . We then perform full
structural relaxation for a series of fixed amplitudes h, which
allows us to obtain the elastic energies. In the calculations
with rectangular supercells, a (4 × 24) k-point mesh was used.

B. Effective masses

Electron and hole effective masses are estimated from
the band structures by fitting the conduction band minimum
(CBM) and valence band maximum (VBM), respectively,
using the expression given by Eq. (2). The calculated band
structure used for the fitting, and the corresponding effective
masses are given in Fig. 1. In all three systems considered,
CBM resides at the � point along the �–M high symmetry
line. The corresponding bands are spin (gs = 2) and valley
degenerate (gv = 2). The constant-energy (Fermi) contours at
small energies form elliptical pockets [41], meaning that the
electron effective mass is different in the direction perpen-
dicular to �–M, denoted in Fig. 1 as −P�–P� . We denote
the corresponding masses as longitudinal (me

l ) and transverse
(me

t ), as shown in Fig. 1. In practical calculations, we use
geometrically averaged effective masses, me = √

me
l me

t , with
the resulting values listed in Table I. The obtained values
overall agree with the literature data [36,59,60].

The case of holes in monolayer P is similar to the case of
electrons. Since VBM is located at the �h point along �–K
symmetry line, the effective mass tensor is anisotropic, and
mh can be calculated as the average of its longitudinal and
transverse components. The situation with the hole effective
masses in As and Sb is different. In these systems, VBM is
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TABLE I. Relevant material constants estimated from first prin-
ciples for group V hexagonal (A7 phase) 2D semiconductors: Elec-
tron (hole) effective mass me(h) (in units of free electron mass), for
the case of hole doped arsenene averaged effective mass is given,
electron (hole) deformation potential ge(h) (in eV), Young modulus

Y (in eV Å
−2

), Poisson ratio ν, flexural rigidity κ (in eV), and a

characteristic wave vector q∗ at T = 300 K (in Å
−1

).

System me mh ge gh Y ν κ q*

P 0.40 1.72 2.26 1.34 4.53 0.11 0.70 0.12
As 0.30 0.33* 1.34 6.13 3.07 0.16 0.51 0.14
Sb 0.29 0.11 0.86 5.99 1.86 0.19 0.33 0.17

* m = √
md mtr, see Sec. III B for details.

located at the � point, making the Fermi contour isotropic
with the direction-independent hole effective masses. Unlike
monolayer Sb, where VBM at the � point is doubly degener-
ate (gs = 2), VBM of monolayer As is four times degenerate
due to the absence of strong spin-orbit coupling. As one can
see, there are two different bands forming the valence band in
monolayer As, meaning that there are two transport channels
for holes in As. To take them into account, specifically for
As we define the transport effective mass, which is the sum
of light and heavy hole masses, mh

tr = mh
lt + mh

h. On the other
hand, the density of states effective mass is different, mh

d =√
mh

hmh
lt . Given that the conventional electron-phonon contri-

bution to the mobility can be expressed through the product
md mtr [61], we employ mh =

√
mh

d mh
tr in the calculations of

As. In all other systems, md and mtr are equivalent.

C. Elastic properties

1. Flexural rigidities

Flexural rigidities κ can be estimated from first principles
starting from a macroscopic expression for the elastic energy
density of a 2D membrane, Eq. (11). In the absence of strain,
it reads

Eelas = κ

2

∫
dr (∇2h)2. (16)

The elastic energy Eelas can be directly obtained from DFT
calculations as the total energy difference �Etot between the
corrugated and flat states of a membrane, Eelas = �Etot. By
employing the sinusoidal height field in the form h(x, y) =
h sin(qx), the constant κ can be estimated by a regression fit
from

�Etot = κ

4

1

R2
, (17)

where R is the curvature radius of a sine wave at its extrema,
given by 1/R = hq2.

In Fig. 2(b), we show the calculated dependencies �Etot as
a function of hq2, which allow us to estimate κ for the systems
under consideration (see Table I for summary). In all cases the
expression given by Eq. (17) perfectly fits DFT data.

2. In-plane elastic constants

In the absence of flexural deformations, the elastic energy
density Eelas of a hexagonal strained 2D material can be
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FIG. 2. Elastic energies and band-edge shifts calculated as func-
tions of in-plane and out-of-plane deformations for hexagonal mono-
layers P, As, and Sb. Panels (a) and (b) are used to determine 2D
Young modulus (Y ) and flexural rigidity (κ), whereas panels (c) and
(d) are used to determine electron and hole deformation potentials
(ge and gh). CBM and VBM stand for the conduction band minimum
and valence band maximum, respectively.

expressed from Eq. (11) as

Eelas = Y ν

2(1 − ν2)
u2

αα + Y

2(1 + ν)
u2

αβ. (18)

The Young modulus Y can be found straightforwardly from
DFT calculations by applying a uniaxial deformation in the
desired direction and allowing full relaxation in other direc-
tions:

Eelas = 1

2
Yu2

αα

∣∣∣∣
σββ=0

, (19)

where σββ is the component of the stress tensor in the relaxed
direction. Similarly, the Poisson ratio can be obtained from
the same set of calculations:

ν = −�lββ

�lαα

∣∣∣∣
σββ=0

, (20)

where �lαα and �lββ are the change of lattice constants in the
strained and relaxed directions, respectively.

In Fig. 2(a), we show the calculated �Etot as a function
of uniaxial strain, which perfectly fits the macroscopic energy
expression given above. This allows us to readily estimate the
Young modulus Y for the materials under consideration. The
calculated Poisson ratios are listed in Table I.

D. Deformation potentials

1. Interaction with in plane phonons

To estimate the coupling of charge carriers with phonons
from DFT calculations, we adopt the concept of the defor-
mation potentials [62]. Assuming the long-wavelength limit,
we quantify linear response of the band edges to external
deformation. To this end, we apply both tensile and compres-
sive biaxial strain and obtain relative band shifts �EVBM and
�ECBM as shown in Figs. 2(b) and 2(c) as a function of strain
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u = uαα = uββ . The band shifts are calculated relative to the
vacuum level Evac, determined for every deformed state, that is
�E = E − Evac, where E is the energy of the corresponding
band edge.

The interaction energy Eint is linear in strain and takes the
form

Eint = 2ge(h)u =
{
�ECBM (electrons)
�EVBM (holes).

(21)

Since the sign of Eint depends on the strain type (tensile or
compressive), the sign of ge(h) is the matter of convention. The
coupling constants are given in Fig. 2 and also summarized
in Table I. While the effective masses, as well as hole defor-
mation potentials (gh) for monolayers As and Sb agree well
with the literature data, larger electron deformation potentials
(ge) have been reported for these materials in Refs. [36,59,60].
The discrepancy can be attributed to a different approach
utilized in those works. Particularly, uniaxial strain was used
to quantify the band shifts, while we utilized biaxial strain
in our work. The latter approach implies that only diagonal
elements of the deformation potential tensor are taken into
account in our study [see Eq. (7)]. This approximation is ex-
pected to quantitatively overestimate the mobilities calculated
below.
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FIG. 3. The ratio of carrier scattering rates induced by anhar-
monic flexural phonons (τ−1

⊥ ) to the total scattering rate (τ−1
‖ + τ−1

⊥ )
calculated as a function of carrier concentration (n) for different
types of dopings in monolayers P, As, and Sb. Red and blue lines
correspond to the Wick decoupling and screening approximations,
respectively, as discussed in Sec. II. Dashed line represents the
average of the two approximations with shaded area showing the
uncertainty of the model. In all cases T = 300 K.

IV. RESULTS AND DISCUSSION

We first analyze the role of flexural phonons and their
anharmonic coupling in the scattering of charge carriers in 2D
semiconductors P, As, and Sb. To this end, we decompose the
total scattering rate into the two contributions τ−1 = τ−1

‖ +
τ−1
⊥ , each of which describes the scattering on pure in-plane

modes [first term on the right-hand side of Eq. (12)] and on
flexural modes subject to anharmonic coupling with in-plane
modes [second term in the same equation]. In Fig. 3, we show
the dependence τ−1

⊥ /τ−1 of the carrier concentration both
for electron and hole dopings calculated at T = 300 K. As
long as the effective mass approximation holds, from Eq. (6)
we have τ−1

‖ = mg2T (1 − ν2)/h̄3Y , meaning that the doping

dependence arises from the τ−1
⊥ term only. In the limit of large

concentrations τ−1
⊥ /τ−1 → 0 because τ−1

⊥ ∼ 1/εF , indicating
that flexural phonons are negligible in this regime, which can
be clearly seen from Fig. 3 for all the cases considered. At
small concentration the behavior is quantitatively different for
the two approximations describing the anharmonic coupling.
Nevertheless, the trend is qualitatively similar: The contri-
bution of flexural phonons becomes independent or weakly
dependent on the doping. This behavior is consistent with q
dependence of the scattering matrix 〈|Vq|2〉, which at q � q∗
behaves as ∼q−0.36 within the Wick decoupling approxima-
tion and approaches a constant in the screening approxima-
tion. On average, the contribution of flexual phonons at room
temperature does not exceed 30% of the total scattering rate
for all materials considered.
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‖ ) scattering rates calculated for different car-

rier concentrations (n) and doping types in P, As, and Sb monolayers.
Red, blue, and dashed lines have the same meaning as in Fig. 3.
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FIG. 5. Carrier mobility calculated as a function of electron and
hole doping in hexagonal monolayers P, As, and Sb for two different
temperatures. Dashed lines correspond to the case of scattering by
in-plane phonons only, while solid lines take both in-plane and
flexural phonons into account. Error bars show uncertainty due to
the approximations used to calculate the anharmonic coupling.

Let us now examine the temperature dependence of the
scattering rate. As has been shown above τ−1

‖ ∼ T inde-
pendently of the carrier concentration. On the other hand,
τ−1
⊥ ∼ T 2 in the harmonic regime (q � q∗), while it soft-

ens significantly in the strong anharmonic regime (q �
q∗), yielding τ−1

⊥ ∼ T 1.18 or ∼T depending on the approx-
imation employed. The temperature dependence calculated
for materials under consideration is shown in Fig. 4. The
trend is similar for all the cases considered. In particular,
at low temperatures τ−1

⊥ /τ−1
‖ is small as the electron gas

is degenerate (T � εF ), resulting in a negligible flexural
phonon contribution. At higher temperatures, the behavior
essentially depends on the carrier concentration. At small
concentration around 1011 cm−2, τ−1

⊥ /τ−1
‖ is almost inde-

pendent of the temperature, indicating the strongly anhar-
monic regime. At concentrations of the order of 1013 cm−2,
the corresponding ratio ∼T , as is expected from the limit
q � q∗.

As a final step, we make a quantitative estimate of the
carrier mobility, presented in Fig. 5 for a wide range of
electron and hole doping in P, As, and Sb. At large carrier con-
centrations, scattering by in-plane phonons dominates, and the
mobility approaches its upper limit for a given temperature.
As the concentration drops down, the mobility decreases by
15–30% for different materials in the carrier density range
from 1012 to 1014 cm−2. This effect is attributed to the
increased role of flexural phonons, whose scattering rate is
inversely proportional to the carrier concentration. At lower

dopings, the scattering behavior is modified by the strong
anharmonic coupling between in-plane and flexural phonons.
In particular, below 1012 cm−2 the mobility behavior is nearly
independent of the material and doping type, resulting in a
constant value.

Quantitatively, the mobilities are strongly dependent on
the carrier type. The electron mobilities are significantly
higher for all the systems considered, which can be attributed
to relatively small effective masses and deformation poten-
tials, listed in Table I. The lowest values not exceeding
1000 cm2 V−1s−1 are obtained for the hole doping of P
and As, i.e., materials with relatively massive carriers. It is
interesting to note that the electron-doped hexagonal (blue)
phosphorus exhibits mobilities an order of magnitude larger
than its orthorhombic (black) counterpart [16]. It should be
emphasized that the results presented in Fig. 5 represent an
upper limit for the intrinsic mobility. A number of impor-
tant factors, such as, for instance, optical phonons, dielectric
screening, many-body renormalization, and other effects, dis-
cussed, for example in Refs. [27] and [63], are not taken into
account in the present study. This can explain some discrep-
ancy with the results obtained from first principles [28,36,37].
Moreover, under realistic conditions, charge carriers are sub-
ject to extrinsic scattering by impurities, defects, and sub-
strates, which could further reduce the mobility by orders of
magnitude.

V. CONCLUSION

Flexural phonons are the inherent phenomena of 2D ma-
terials, which necessarily contributes to the electron-phonon
scattering. Unlike conventional in-plane modes, whose con-
tribution to electronic transport is weakly dependent on
the carrier concentration, scattering on flexural phonons be-
comes more effective in the regime of low carrier den-
sities. At the same time, this regime is characterized by
the strong anharmonic coupling between in-plane and flex-
ural modes, resulting in the modification of the scattering
behavior.

Here we developed a theory for the electron-phonon scat-
tering in 2D semiconductors taking the anharmonic effects
into account. We applied this theory to examine the scatter-
ing behavior in typical group V hexagonal monolayers. We
showed that although the scattering rate is affected by the
flexural phonons, the net effect does not exceed 30%. Com-
pared to the harmonic approximation, where the scattering by
flexural phonons is divergent in the limit of low concentra-
tions, the anharmonic coupling suppresses this effect signifi-
cantly. For all materials considered, at carrier concentrations
below 1012 cm−2 flexural phonon contribution turns out to be
nearly independent of doping in a wide range of temperatures.
Figure 5 summarizes our findings.

From the practical point of view, the suppression of flexural
phonons (e.g., by a substrate or by strain) is considered to
be one of the ways to enhance the mobility in 2D semi-
conductors. Our results show that this approach is highly
limited and cannot lead to significant mobility gain. On the
theory side, flexural phonons can be safely excluded from the
consideration in the electronic transport calculations.
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APPENDIX: DERIVATION OF ANHARMONIC
SCATTERING PROBABILITY

Here we provide details on the derivation of Eq. (12).
Treating the phonon fields classically, the thermal average
of |Vq|2 is given by the following functional integral over
in-plane and out-of-plane displacement fields:

〈|Vq|2〉 = Z−1
∫

Dh(r)
∫

Du(r) |Vq|2e−βH , (A1)

where the Boltzmann weight is determined by the Hamilto-
nian in Eq. (11). The partition function Z is given by:

Z =
∫

Dh(r)
∫

Du(r) e−βH . (A2)

Before performing the Gaussian integration over in-plane
fields, it is useful to decompose fαβ (q), the Fourier transform
of fαβ (r) = ∂αh(r)∂βh(r), into longitudinal and transverse
parts [19,20]:

fαβ (q) = i[qαφβ (q) + qβφα (q)] + PT
αβ (q) f T (q). (A3)

Here PT
αβ (q) = δαβ − qαqβ/q2 is the transverse projector and

f T (q) = PT
γ δ (q) fγ δ (q). It is then convenient to change vari-

ables in the functional integral [19,20] and to integrate over

shifted in-plane fields, defined in Fourier space as:

ũα (q) ≡ uα (q) + φα (q) − ν
i

2

qα

q2
f T (q), (A4)

where ν = λ/(λ + 2G) is the 2D Poisson ratio. In terms of the
variables ũα (q), the Hamiltonian reads

H =
∑

q

{
1

2
κq4|hq|2 + Y

8
f T (q) f T (−q)

+ 1

2
[(λ + G)qαqβ + G q2δαβ]ũα (qt )ũβ (−q)

}
, (A5)

where Y = λ(1 − ν2)/ν. The Fourier transform of the defor-
mation potential can be written as

Vq = igqα ũα (q) + g

2
(1 − ν) f T (q). (A6)

The out-of-plane fields and the in-plane modes ũα (q) are now
decoupled in the Hamiltonian. The thermal average of |Vq|2 is
therefore:

〈|Vq|2〉 = g2qαqβ〈ũα (q)ũβ − q)〉

+ g2 (1 − ν)2

4
〈 f T (q) f T (−q)〉. (A7)

Since the Hamiltonian is quadratic in the fields ũα , the cor-
relation function 〈ũα (q)ũβ (−q)〉 can be calculated explicitly.
From the Hamiltonian (A5) we find:

〈ũα (q)ũβ (−q)〉 = T

(λ + 2G)q2
PL

αβ (q) + T

Gq2
PT

αβ (q), (A8)

where PL
αβ (q) = qαqβ/q2 is the longitudinal projector. Com-

bining Eqs. (A7) and (A8) yields:

〈|Vq|2〉 = g2 T

λ + 2G
+ g2 (1 − ν)2

4
〈 f T (q) f T (−q)〉

= g2 T

Y
(1 − ν2) + g2 (1 − ν)2

4
〈 f T (q) f T (−q)〉, (A9)

which is Eq. (12) in the main text.
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