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experimentally using such techniques 
as angle-resolved photoemission spec-
troscopy (ARPES),[11–13] magnetotrans-
port,[14–16] and optical[17] measurements.

The family of ternary compounds ZrSiX 
(X = S, Se, Te) is a typical example of 
nodal-line semimetal with well separated 
Dirac cones.[12,18] The presence of topo-
logically nontrivial linear bands in ZrSiX 
has been observed experimentally by sev-
eral methods, including ARPES,[12,19–21] 
scanning probe techniques,[22,23] as well 
as thermoelectric[15] and magnetotrans-
port[24–29] measurements of quantum 
oscillations. Among ZrSiXs, ZrSiS is espe-
cially prospective material for optoelec-
tronic applications due to its high carrier 
mobility,[15,30] thermal stability,[31] and 
non-toxic nature.[32] A significant atten-
tion has been paid to ZrSiS due to its unu-

sual properties observed in experiment. Particularly, ARPES 
experiments reveal that ZrSiS hosts two kinds of nodal lines. 
While in the first kind the degeneracy of Dirac points is pro-
tected by non-symmorphic symmetry, in the second kind the 
degeneracy is lifted by the spin–orbit coupling, inducing a 
small gap of the order of 10 meV.[12] The upper limit of this gap 
(≈30 meV) is observed by recent low-frequency optical meas-
urements.[33] Compared to other known 3D Dirac materials, the 
energy range of the linearly dispersing bands in ZrSiS reaches 
2 eV, making this material a promising candidate for studying 
Dirac fermions. Apart from Dirac physics, extremely strong 
Zeeman splitting with a large g-factor has been observed by 
measuring de Haas-van Alphen (dHvA) oscillations.[25] There is 
also evidence of an important role of the correlation effects in 
ZrSiS and related materials. The unusual mass enhancement 
of charge carriers in ZrSiS has been recently observed experi-
mentally at low-temperatures,[24] which can be understood in 
terms of unconventional electron–hole pairing.[34,35] Last but 
not least, recent high-pressure electrical transport measure-
ments pointed to the possibility of a topological phase transi-
tion in ZrSiS below 0.5 GPa.[36]

In comparison to conventional metals, Dirac semimetals 
have raised intense interest both from fundamental and 
applied perspectives due to their intriguing optical proper-
ties.[1,37,38] Recently, optical spectra of ZrSiS were measured 
in a large frequency range, from the near-infrared to the vis-
ible.[33] It was found that the absorption spectrum remain 
almost unchanged for photon energies in the range from 30 to 
350 meV.[33] As has been pointed out by Bácsi and Virosztek,[39] 
in a noninteracting electron system with two symmetric 
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1. Introduction

As 3D analogues of graphene, Dirac and Weyl semimetals 
have attracted considerable attention in the past years.[1–5] 
Both Dirac and Weyl materials are characterized by linearly 
dispersing valence and conduction bands that cross at discrete 
point in momentum space, giving rise to low-energy excitations 
behaving like Dirac or Weyl fermions. Recently, a novel class 
of topological materials, nodal-line materials, has been pre-
dicted.[6,7] In comparison to Dirac and Weyl semimetals, band 
crossing in nodal-line semimetals occurs along continuous 
lines. Since 2011, several materials were proposed to be nodal-
line semimetals,[8–10] and some of them have been confirmed 
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energy bands touching each other at the Fermi level, the real 
part of the interband optical conductivity σ1(ω) demonstrates 

a power-law frequency dependence with d zσ ω
∝ −

(
2

)1
( 2)/ , 

where d and z are the dimension of the system and the power 
law of the band dispersion, respectively.[39] The flat optical 
conductivity is typical for graphene (d = 2 and z = 1), being a 
universal constant for Dirac electrons in two dimensions.[37,40] 
In three dimensions, this behavior is not universal. Linear 
dependence is reported in point-node Dirac or Weyl semi-
metals as ZrT5,[41] TaAs,[42] and Cd3As2

[43] (d = 3 and z = 1). The 
flatness of the optical conductivity in ZrSiS is determined by 
an appropriate combination of intraband and interband tran-
sitions.[44] Followed by the flat region, the optical conductivity 
in ZrSiS exhibits a characteristic U-shape ending at a sharp 
peak around 1.3 eV.[33,45] Interestingly, the optical response is 
strongly anisotropic with the 1.3 eV peak appearing in the in-
plane [100] direction only.[44] Besides, essentially anisotropic 
magnetoresistance in ZrSiS has been measured experimen-
tally.[26,46] Recent findings on the family of compounds ZrSiX 
(X = S, Se, Te) and ZrGeX (X = S, Te) suggest that their optical 
properties are closely connected to the interlayer bonding, and 
can be tuned by external pressure.[45]

Unlike infrared and visible spectral regions, ultraviolet 
optical response of ZrSiS has not been studied yet. Besides that, 
previous works focus on the optical properties of pristine ZrSiS, 
while the effect of strain has not been addressed in detail. The 
ultraviolet region is especially appealing for plasmonic applica-
tions, for which ZrSiS appears promising due to its high car-
rier mobility, closely related to the sustainability of plasmonic 
modes. Short propagation length (lifetime) of plasmons in 
typical plasmonic materials (e.g., noble metals) represents a 
bottleneck for applications.[47] At the same time, the application 
domain of ultraviolet plasmonics is highly diverse. It includes 
biochemical sensing applications,[48,49] photodetection,[50] nano-
imaging,[51] material characterization,[52] and absorption of 
radiation.[53]

In this paper, we study broadband optical properties of 
ZrSiS crystals with a special emphasis on the effect of external 
strain. To this end, we use first-principles calculations in com-
bination with the random phase approximation for the dielec-
tric screening. We find that although the low-energy optical 
conductivity remains frequency-independent under uniaxial 
loading of up to 10 GPa, the corresponding spectral region is 
narrowing with increasing stress. In the presence of tension, 

we observe an electronic Lifshitz transition at around 2 GPa. 
This transition results in a suppressed intraband screening, 
which reduces the spectral weight in the infrared region. 
Apart from the flat optical conductivity at low energies, our 
calculations show that ZrSiS is characterized by high-energy 
plasma excitations with frequencies around 20 eV. Given that 
the optical response in ZrSiS is highly anisotropic, it permits 
the existence of low-loss hyperbolic plasmons in the ultravi-
olet spectral range.

The paper is organized as follows. In Section 2, we describe 
our computational method and calculation details. Optical prop-
erties of pristine ZrSiS are presented in Section 3, where we 
specifically focus on the low- and high-energy spectral regions. 
In Section 4, we study the effect of external strain on the optical 
conductivity and plasma excitations in ZrSiS. In Section 5, we 
summarize our findings.

2. Calculation Details

2.1. Electronic Structure

ZrSiS is a layered crystal with a tetragonal structure and space 
group P4/nmm (No. 129). Its structure is formed by Zr-S 
layers sandwiched between Si layers, and periodically repeated 
in the direction normal to the layers, as shown in Figure 1a. 
The equilibrium lattice constants obtained from full structural 
optimization at the DFT level are a = 3.56 Å (in-plane) and c = 
8.17 Å (out-of-plane). The DFT electronic structure calculations 
are performed within the pseudopotential plane-wave method 
as implemented in quantum espresso[54] simulation package. We 
use generalized gradient approximation (GGA)[55] in combina-
tion with norm-conserving pseudopotentials,[56] in which 4s and 
4d electrons of Zr, 3s and 3p electrons of Si, as well as 3s and 
3p electrons of S were treated as valent. The reciprocal space 
was sampled by a uniform (24 × 24 × 8) k-point mesh. In the 
calculations, we set the energy cutoff for the plane-wave basis 
to 80 Ry, and a self-consistency threshold for the total energy 
to 10−12 Ry. The atomic structure and lattice parameters were 
optimized until the residual forces on each atom were less than 
10−5 Ry Bohr−1. The effect of spin–orbit coupling is not taken 
into account in our study as it is only relevant for low tempera-
tures (<100 K) and in the low-frequency region (<20 meV).[33] 
All crystal graphics was generated by means of xcrysden visuali-
zation package.[57]

Adv. Electron. Mater. 2020, 6, 1900860

Figure 1. a) Schematic representation of the ZrSiS crystal structure; b) Calculated band structure and orbital-resolved density of states in the vicinity 
of the Fermi energy; c) 3D view of the Fermi surface with purple and cyan colors denoting valence and conduction states, respectively. Black lines mark 
the Brillouin zone boundaries. Dashes blue lines connect the high-symmetry points used in (b).
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2.2. Dielectric Function

Dielectric function ωε ( , )qq  was calculated within the random 
phase approximation (RPA) using yambo[58] package. Its 
standard form as function of wave vector qq and frequency of 
incident photon ω reads:

vω χ ω= −ε ( , ) 1 ( ) ( , )0qq qq qq  (1)

where v
eπ

=( )
4

| |

2

2qq
qq

 is the bare Coulomb potential, χ0 is the irre-

ducible response function evaluated within the independent 
particle approximation:[58]
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where

n e mnm
iρ = 〈 − 〉⋅( ) | |qq kk kk qqkk
qq rr  (3)

is the dipole transition matrix element, f nkk is the Fermi occupa-
tion factor, for which T = 300 K was used in all calculations, n 〉| kk  
is the Bloch eigenstate corresponding to the band n and wave 
vector kk, and V is the cell volume. To avoid computationally 
demanding calculations, we assume the scalar form of ε(q, ω) 
and χ0(q, ω), meaning that only G = 0 and G′ = 0 elements of 
the full matrices are calculated. Physically, this approximation 
corresponds to the situation, in which the local field effects are 
neglected, that is, ε(r1, r2) ≃ ε(|r1 − r2|). This approximation is 
well justified for 3D systems with weak inhomogeneities of the 
charge density.[59] In Equation (2), η is the damping parameter 
playing the role of the electron linewidth, which can be attrib-
uted to the imaginary part of the self-energy, η ω≈ ΣIm[ ( , )]kk .[60] 
Here, we do not detail the scattering mechanism and consider 
η as a free parameter.

To reproduce the quantities measured in optical experi-
ments, one needs to evaluate the long-wavelength limit of the 
dielectric function,

ω ω≡αα
→

ε ε( ) lim ( , )
0

qq
qq

 (4)

where α is the direction of the incident light, and the limit 
is taken with q parallel to α. Taking this limit numerically is 
a computationally nontrivial task as it requires high den-
sity of q-point to be included in the calculations. This can be 
avoided by expanding the dipole transition matrix elements at 

→ 0qq  using e ii ≈ + ⋅⋅ 1 qq rrqq rr . To this end, the matrix elements 
n mnm = 〈 〉| |rr kk rr kkkk  needs to be computed. Within the periodic 

boundary conditions using the relation H Vnl= +[ , ] [ , ]rr pp rr  one 
arrives at[61]

n m
n V mnl

n mε ε
〈 〉 =

〈 + 〉
−

| |
| [ , ] |

kk rr kk
kk pp rr kk

kk kk

 (5)

where Vnl is the nonlocal part of the pseudopotential.

At q → 0, Equation (2) does not explicitly takes intraband 
transitions into account. Since ZrSiS is a semimetal, the intra-
band transition provide an important contribution to the dielec-
tric response at low energies. To account for this contribution, 
we calculate the Drude corrections to the dielectric function 

iω ω ω= +αα αα ααε ε ε( ) ( ) ( )intra
1,
intra

2,
intra , which are evaluated from the 

standard free-electron plasma model:[62]
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Here, δ has similar physical meaning as η in Equation (2), 
and ωp, αα is the α-component of the (unscreened) plasma 
frequency given by refs. [63,64]:

e
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kk
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where v kn nε= ∂ ∂α
α

−
 /1

kk kk  is the α-component of the group 
velocity of the electrons with wave vector k at band n. In this 
work, the plasma frequency is calculated using the simple 
code.[65]

The intraband contribution to the optical conductivity can be 
calculated accordingly, using the well-known expressions:[60]
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3. Optical Properties of Pristine ZrSiS

3.1. Low-Energy Region

We first calculate the electronic structure of ZrSiS for its 
equilibrium crystal structure. In Figure 1, we show the band 
structure, density of states projected on s-, p-, and d-orbitals 
(PDOS), and the corresponding Fermi surface. The most 
prominent feature of the band structure is a series of linearly 
dispersing bands with the Dirac-like crossings in the vicinity 
of the Fermi energy (εF). The linear bands extend over a rather 
large energy range of up to 2 eV. From Figure 1b, one can see 
that DOS exhibits a minimum at εF, as expected near the band 
crossing points. In the range from −1 to 0 eV, the valence 
states are entirely formed by linearly dispersed bands, while 
the states above εF are mixed with quadratic bands, giving rise 
to a larger DOS for the conduction band. As can be seen from 
PDOS, d-orbitals have dominant contribution to the states 
near εF. At ε ≲ 1 eV there is a comparable contribution from 
p-orbitals. In Figure 1c, we show the corresponding Fermi 
surface. It is composed of two distinct parts, corresponding to 
electron (cyan) and hole (purple) states. Each part is formed 
by four disconnected pockets. As we will see below, the Fermi 
surface topology plays an important role in the optical proper-
ties of strained ZrSiS.

Adv. Electron. Mater. 2020, 6, 1900860
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After the ground state electronic structure is obtained, we 
calculate the dielectric functions, and the corresponding optical 
conductivities. We start from the q → 0 limit and first calcu-
late the unscreened plasma frequencies using Equation (7). We 
arrive at ωp, xx = 3.15 eV and ωp, zz = 1.08 eV for the in-plane 
[100] and out-of plane [001] components, respectively. The value 
obtained for the [100] directions is in good agreement with 
the experimental estimate of 2.88 eV.[33] In Figure 2a,c, we show 
the real and imaginary parts of the optical conductivity calcu-
lated in the region up to 2 eV for [100] and [001] directions of 
photon propagation. The spectral weight obtained for the in-
plane direction is significantly larger compared to the out-of-
plane direction. This indicates a strong anisotropy between the 
optical response in ZrSiS.

In order to assess sensitivity of the optical conductivity to 
the effects induced by finite electron linewidth, in Figure 2b 
we show the real part of the low-energy optical conductivity 
calculated for different parameters η at the range from 20 to 
60 meV. From Figure 2b, one can clearly see the prominent 
flat conductivity from 0.1 to 0.4 eV. The flat conductivity σflat 
is estimated to be ≈7000 Ω−1cm−1, which is in good agreement 
with the experimental result of 6600 Ω−1 cm−1.[33] The flatness 
is well reproduced for η = 30–40 meV, while larger values result 
in a noticeable smearing of the flat region. For η ≲ 20 meV, one 
can see the emergence of an oscillatory behavior. This behavior 
is of the numerical origin, and can be associated with insuf-
ficient sampling of the Brillouin zone. In what follows, we set 
η = 40 meV in all low-energy (0–2 eV) conductivity calcula-
tions. This value is in agreement with the electron linewidth 

experimentally estimated in ZrSiS as ≈30 meV at 300 K.[33] Fol-
lowing the flat region, there appears a U-shaped optical con-
ductivity around 1.3 eV.[45] The peak above the U-shaped region 
at ≈1.3 eV is only found for the in-plane direction, while it is 
absent in the out-of-plane direction. This peak mainly origi-
nates from the excitation between the linearly dispersing bands 
near εF and from the transitions between quadratic bands in 
the direction from Z to R.

In Figure 2d, we show the real part of the calculated in-
plane dielectric function. The condition pω =ε ( ) 01

scr  allows us 
to estimate the screened plasma frequency, which is found to 
be pω ≈ 1scr  eV. Having determined pω scr, we can estimate the 
effective screening induced by the interband transitions.[62] The 
corresponding dielectric constant p pω ω= ≈∞ε ( / ) 9scr 2 , which 
is consistent with the experimental value of ≈7.8.[33] To under-
stand the effect of finite electron linewidth on pω scr, we also 
plot ε1(ω) for different parameters η in Figure 2d. Compared 
to the flatness of the optical conductivity, the screened plasma 
frequency is almost insensitive to η.

3.2. High-Energy Region

We now turn to the optical response in the high energy region, 
ω > 2 eV. Here, we focus at the plasmonic excitations and con-
sider momentum-resolved dielectric function ε(q, ω), which 
is shown in Figure 3 as a function of the photon energy for a 
series of small wave vectors q in both in-plane and out-of-plane 
directions. At ω ≳ 10 eV, ε(q, ω) is monotonic at small q, with 

Adv. Electron. Mater. 2020, 6, 1900860

Figure 2. a) Real part of the optical conductivity shown as a function of the photon energy with incidence along in-plane [100] and out-of-plane [001] 
crystallographic directions; b) Real part of the in-plane optical conductivity calculated for different damping parameters η; c) Imaginary part of the 
optical conductivity calculated along [100] and [001] directions; d) Real part of the in-plane dielectric function calculated for different η.
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ε(q, ω) → 1 as ω → ∞, which is expected from the Drude model 
(Equation (6)). The most interesting energy region is deter-
mined by the condition ω =ε ( , ) 01 qq , which defines the exist-
ence of plasma excitations. From Figure 3, one can see that this 
criterion is fulfilled for two different energy regions: ωp ≈ 5 − 7 
and ωp ≈ 19 − 20 eV. To gain more insights in the plasmonic 
response, we calculate the energy loss function

( , ) Im
1

( , )
L ω

ω
= −









qq

qqε
 (9)

which can be associated with the electron energy loss spectros-
copy (EELS) spectra. Figure 4 shows L(q, ω) calculated along 
the in-plane and out-of-plane directions of ZrSiS. In both cases, 
one can see a sharp peak around 20 eV, while there is no indica-
tion of the energy loss at lower energies. This means that the 
plasma oscillations around 5–7 eV are strongly damped. This 
can be understood from Figure 3, where ε2(q, ω) exhibits a peak 
around ω ≈ 5 eV, indicating strong absorption in this region. 
On the other hand, ε2(q, ω) is almost zero around ω ≈20 eV, 
indicating that high-energy plasmons are characterized by low 
losses, and could be observed experimentally. Recently, similar 
behavior has been experimentally observed in bulk black phos-
phorus crystal in the same frequency region.[66]

The dispersion of bulk plasmons can be fitted with a second-
order polynomial:

E E A= +( ) (0) 2qq qq  (10)

where E(0) is the plasmon energy at → 0qq  and A is the dis-
persion coefficient. From Figure 4, it can be seen that the 
calculated dispersion can indeed be fitted with Equation (10). 
Interestingly, although the plasma frequency is nearly inde-
pendent of the direction of light propagation, the dispersion of 
high-energy plasmon modes is strongly anisotropic. The exist-
ence of high-energy plasmons in ZrSiS might be beneficial in 
the context of ultraviolet optical devices.[67] At the same time, 
strongly anisotropic dispersion of plasmon modes may give 
rise to unconventional plasma excitations, known as hyperbolic 
plasmons.[68]

Hyperbolic plasmons appear in crystals with strong anisot-
ropy, in which effective permittivity changes sign with respect 
to the electric field direction.[69] The dispersion relation of light 
propagating in homogeneous layered material is determined by 
the relation:

k k k

c
x y

zz

z

xxω ω
ω+

+ =
ε ε

( )

( ) ( )

2 2 2 2

2  (11)

where εxx and εzz are the frequency-dependent permittivities 
along the in-plane and out-of-plane directions, respectively. For 
frequencies at which εxx(ω) · εzz(ω) < 0, the equation above 
describes a hyperboloid. This situation is considerably dif-
ferent from the closed spherical or elliptic dispersion typical for 
conventional materials with εxx(ω) · εzz(ω) > 0.[70,71] Depending 
on the form of the isofrequency surface, one can distinguish 
between the two types of hyperbolic materials: Type I if the 

Adv. Electron. Mater. 2020, 6, 1900860

Figure 3. Imaginary (upper panels) and real (lower panels) parts of the dielectric function of pristine ZrSiS calculated as a function of the photon 
energy ω for a series of wave vectors qq along the in-plane (left panels) and out-of-plane (right panels) directions. Inset shows a zoom-in of the high-
energy region where ε1(q, ω) = 0.
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hyperboloid is two-sheeted (εzz < 0, εxx > 0), and type II if the 
hyperboloid is single-sheeted (εzz > 0, εxx < 0).

In Figure 5a, we show the corresponding permittivities cal-
culated in ZrSiS as a function of the photon energy. One can 
see that the condition εxx(ω) · εzz(ω) < 0 is fulfilled in a narrow 
energy region around ≈5 and ≈20 eV, which are the frequencies 
at which the conventional bulk plasmon modes are found. In 
both cases, the hyperbolic plasmons may appear in a frequency 
range of about 0.6 eV. Both hyperbolic modes demonstrate the 
dispersion relation of type I, corresponding to a two-sheeted 
hyperboloid, shown in Figure 5b. Simliar to other natural 
hyperbolic materials, hyperbolic regimes in ZrSiS appear only 
above the onset of intraband transition.[70] Since electronmag-
netic waves propagating in hyprobolic materials follow the 
hyperbolic dispersion, hyprobolic media supports propagation 
of high-kk waves that are evanescent in conventional media.[69] 
Due to the properties of high-kk waves, hyperbolic material have 
many potential applications, including negative refraction,[72,73] 
sub-wavelength modes[74] and thermal emission engineering.[75] 
We note, however, since the ≈5 eV mode is strongly damped, its 
practical significance is questionable.

4. Optical Properties of Uniaxial Strained ZrSiS

Earlier studies on the family of compounds ZrSiX (X = S, 
Se, Te) suggest that their physical properties are closely con-
nected with the interlayer bonding. Moreover, the ratio of the 
out-of-plane and in-plane lattice constants c/a can be consid-
ered as a measure for the interlayer bonding strength in these 

Adv. Electron. Mater. 2020, 6, 1900860

Figure 5. a) Product of the in-plane and out-of-plane real dielectric func-
tions shown as a function of energy; b) Reciprocal-space representation 
of the constant-energy surfaces of two possible hyperbolic plasmon 
modes in ZrSiS, denoted as regime I (left) and II (right). The color shows 
the magnitude of kz.

Figure 4. Upper panels: Electron energy loss spectrum L(q, ω) as a function of the photon energy ω and momentum qq  calculated for the in-plane (left) 
and out-of-plane (right) directions. Lower panels: Dispersion of the high-energy plasmon ωp(q) calculated along the in-plane (left) and out-of-plane 
(right) directions.
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systems.[13,45,76] In this regard, uniaxial strain applied in the 
out-of-plane direction is a promising way to tune the materials’ 
properties. Inspired by recent experimental works, which indi-
cate the possibility of a topological phase transition in nodal-
line semimetals under external pressure,[36,76] here we study 
how the uniaxial strain would affect the optical properties 
of ZrSiS.

Before discussing the effect of strain on the electronic struc-
ture, we briefly focus on the mechanical properties of ZrSiS. 
We apply uniaxial strain in the direction perpendicular to the 
ZrSiS layers by varying the out-of-plane lattice constant c, and 
relaxing the in-plane lattice constant a. The stress is defined as 

1 F

u
ij

ij

σ =
Ω

∂
∂

, where Ω is the volume of unit cell, and uij is the 

strain tensor. In our case, we focus on uniaxial strain assuming 
in-plane relaxation (σxx = σyy = 0) and the absence of shear 
strain, that is, uxy = uxz = uyz = 0. F is the free energy of the 
crystal, which in the case of tetragonal symmetry (point group 
D4h) is given by[77]

1

2
( )

1

2
( )

2 2 2F u u u

u u u u u u

xxxx xx yy zzzz zz

xxzz xx zz yy zz xxyy xx yy

λ λ

λ λ

= + +

+ + +

 (12)

where λ is the tensor of elastic moduli. The calculated stress-
strain curves are shown in Figure 6. In case of uniaxial com-
pressive strain along the out-of-plane direction (uzz), the σzz 
versus uzz curve is nearly linear, indicating typical elastic 
regime and applicability of the Hooke’s law. On the other hand, 
as can be seen from Figure 6, the tensile strain is highly non-
linear already at 2% tension. The observed nonlinearity of the 
elastic properties indicates a considerable modification of the 
electronic structure upon tensile strain. In Figure 6, we also 
show the dependence of the in-plane strain uxx with respect to 
uzz. For uzz in the range from −5% to +5%, we obtain a perfect 
linear dependence, which allows us to estimate the Poisson’s 
ratio. We obtain ν = −duxx/duzz = 0.24, which is in agreement 
with the results of previous studies.[78]

Let us now discuss the strain-dependent electronic proper-
ties of ZrSiS. In Figure 7a, we show the band structures for 
the case of compressive and tensile uniaxial strain uzz of 1%, 
3%, and 5%. One can see that the linear dispersion of states 
near the Fermi energy is unaffected by the uniaxial strain in 
the range from −5% to +5%. The position of the Dirac points 
near the Fermi energy changes slightly, which is not expected 
to have any noticeable effects on the optical transitions at low 
energies. On the other hand, the position of the nonsymmor-
phic Dirac node at the X and R points is more susceptible to 
strain. As has been pointed out by Andreas et al., the location of 
these points in ZrSiX (X = S, Se, Te) correlates strongly with the 
chemical pressure c/a.[13] The most prominent effect of strain 
on the electronic structure of ZrSiS is the shift of the quadratic 
electron band along the energy axis. The tensile strain pushes 
this band toward the Fermi energy, while the compressive 
strain has the opposite effect. At around 2% tensile strain, the 
electron states along the Z–R line cross the Fermi energy. The 
optical conductivity has contributions from both free carriers 
(Drude) and interband transitions in the vicinity of the Dirac 
points. The quadratic band, which crosses the nodal line at 
some k-points reduces the transition probability between the 
linear bands. This behavior is expected to have influence on the 
optical properties in the low-energy region.

Upon uniaxial compression of ZrSiS, its Fermi surface does 
not undergo any considerable modification, remaining topolog-
ically equivalent to the Fermi surface of pristine ZrSiS shown 
in Figure 1c. In contrast, in case of tensile strain the Fermi 
surfaces changes its topology as a consequence of the emerged 
conduction states with quadratic dispersion. One can distin-
guish between two Lifshitz transition occurring in stretched 
ZrSiS. When tensile stress reaches P1 ≈ 1.3 GPa, the previously 
disconnected hole pockets merge with each other, forming a 
ring at kz = π/c. The corresponding merging region is high-
lighted in Figure 7b. Up to 4% tension, the electron and hole 
pockets are connected along the Z–R direction. When tensile 
stress reaches P2 ≈ 3.4 GPa, a gap is being formed between the 
electron and hole pockets, manifesting itself the second transi-
tion in the Fermi surface topology (highlighted in Figure 7b). 
We also examine the nodal-line structure under tensile strain 
focusing at k-points where Lifshitz transition takes place at 
the Fermi surface. The corresponding structure is shown in 
Figure 7c. Below −2% strain, the nodal lines form a continuous 
cage-like structure in the Brillouin zone. When tensile strain 
is increased, the nodal lines oriented in the kz direction get 

disconnected from the nodal loop at k
c

z

π
= ±  along the Z–R 

direction at the cage corners. The corresponding separation 
between the nodal lines is increasing with strain, and can also 
be directly attributed to the appearance of the quadratic band 
along Z–R. Besides, one can see that the curvature of the nodal 

loop at k
c

z

π
= ±  changes its sign when strain increases from 

−1% to −4%.
We now examine the effect of strain on the interband 

screening. To this end, we first calculate the unscreened 
plasma frequency shown in Figure 8 for the two crys-
tallographic directions. While out-of-plane plasma frequency 
ωp, zz exhibits a pronounced linear dependence as a function 

Adv. Electron. Mater. 2020, 6, 1900860

Figure 6. Black curve: The zz-component of the stress tensor (σzz) as a 
function of the uniaxial strain uzz in ZrSiS. Orange curve: In-plane strain 
uxx versus out-of-plane strain uzz. ν = −duxx/duzz is the corresponding 
Poisson ratio estimated by linear regression.
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of strain, the in-plane plasma frequency, ωp, xx demon-
strates a more sophisticated dependence. Different behavior 
of ωp, zz and ωp, xx can be attributed to the difference in the 
Fermi velocities along the x- and z- directions. The strain-
dependent screened plasma frequency pω scr can be obtained 
from ε1(ω) shown in Figure 9. For compressive strain and 
small tensile strain up to 2%, pω scr remains nearly a constant 
of around 1.0 eV. The situation for larger tensile strain is 
different. Due to the electronic Lifshitz transition, the nodal 
structure of ε1(ω) changes, leading to an enhancement of pω scr, 
which reaches ≈1.3 eV at 4% tension. The related interband 
screening p pω ω=∞ε ( / )scr 2 is changing accordingly. As it is 
shown in Figure 8, the in-plane component of ε∞ is remaining 
around 9–10 up to 1% tension, after which it decreases rapidly 

until the tension reaches 4%, that is, after the Fermi surface 
modification has occurred. In this regime, ε∞ ≈ 3 − 4, similar 
to the experimental values reported for ZrSiTe (≈3.3).[76] This 
result is in favor of the chemical pressure mechanism pro-
posed to describe the difference between the ZrSiX (X = S, 
Se, Te) family members. Overall, the interband screening in 
moderately stretched ZrSiS is reduced considerably, which is 
expected to influence the optical response.

The in-plane conductivity calculated for different values 
and types of strain is shown in Figure 9 as a function of 
the photon energy. The frequency-independent conductivity 
region tends to narrow (broaden) as the compressive (tensile) 
strain is applied. Besides, the spectral weight in the low-
energy region almost linearly enhances with load, gaining 

Adv. Electron. Mater. 2020, 6, 1900860

Figure 7. a) Band structures calculated in the vicinity of the Fermi energy for different values of the uniaxial strain uzz in ZrSiS. Positive and negative 
values correspond to compression and tension, respectively. The related stress is given in parentheses; b) The Fermi surfaces and c) corresponding 
nodal-line structure shown for the case of tensile strain, at which electronic Lifshitz transition is taking place. Circles and arrows highlight the location 
where the transition occurs.
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≈50% at 5% compression. On the contrary, the tensile strain 
reduces the spectral weight, yet not monotonously. At ≈3% 
tension the optical conductivity is dropped, which apparently 
associated with the reduction of the interband contribution to 
the dielectric screening discussed earlier. The observed low-
ering of the spectral weight in stretched ZrSiS is in line with 
the smaller flat optical conductivity observed in ZrSiSe with a 
larger c/a lattice parameter.[45]

At a larger energy scale, the effect of strain is less pro-
nounced in the optical properties. In the range from 0.5 to 
1.2 eV the optical conductivity is redshifted upon compression, 
while at larger frequencies it is blueshifted. The opposite situ-
ation is observed for the case of tensile strain. At low energies, 

the optical conductivity is mainly determined by the transitions 
between the linear bands in the electronic structure, as well 
as by the details of the Fermi surface. At energies above 1 eV, 
the transitions between the parabolic bands become impor-
tant, whose position on the energy axis is largely dependent 
on strain. As a consequence, the characteristic U-shape of the 
optical conductivity around 1 eV almost disappears for more 
than 4% tensile strain.

Finally, we would like to comment on the effect of strain on 
the high-energy plasma excitations in ZrSiS. As this energy 
region is almost unrelated to the Fermi surface properties, 
the corresponding effect is less significant. In Figure 10, we 
show the dispersion of the high-energy plasmon mode, as 
well as the corresponding parameters entering Equation (10). 
Although the plasma frequency almost linearly changes with 
strain, the effect does not exceed a few percent for 5% strain. 
In contrast, the dispersion of the plasma excitations can be 
tuned effectively by the compressive strain. While the disper-
sion along the out-of-plane direction decreases with strain 
gaining 30% at +5%, the opposite effect is observed along the 
in-plane direction.

5. Conclusions

Based on first-principles calculations, we have systematically 
studied optical properties of nodal-line semimetal ZrSiS in 
the presence of uniaxial strain. We find that the characteristic 
frequency-independent optical conductivity is robust with 
respect to external uniaxial compression of up to 10 GPa. The 
compressive strain increases the spectral weight at low ener-
gies, but leads to a narrowing the flat conductivity region. The 
case of tensile strain is found to be more interesting. Upon 
tensile stress of 2 GPa, the Fermi surface undergoes a Lifshitz 
transition, resulting in a weakening of the interband dielec-
tric screening. As a result, the spectral weight in the infrared 
region is reduced. The results obtained for stretched ZrSiS 
correlate with the properties of ZrSiSe and ZrSiTe, mate-
rials with larger lattice constants c/a. We, therefore, confirm 
the chemical pressure mechanism proposed in ref. [45] to 
describe variability in the electronic and optical properties of 
the ZrSiX (X = S, Se, Te) family of compounds. On the other 
hand, the uniaxial tensile stress up to 2 GPa could be applied 
experimentally by flexure-based four-point mechanical wafer 
bending setup.[79]

In the high-energy region, we found one lossy and one loss-
less plasmon modes at ≈5 and ≈20 eV, respectively. Although 
the frequencies of these modes remain almost unchanged in 
the presence of strain of up to 5%, their dispersion can be effec-
tively tuned. Being a layered material, ZrSiS exhibits strongly 
anisotropic dielectric response between the in-layer and 
stacking directions. This gives rise to the possibility of exist-
ence of hyperbolic plasmons in ZrSiS. Our calculations show 
that the hyperbolic regime indeed may exist within a frequency 
range of 0.6 eV around ≈5 and ≈20 eV. Overall, our findings 
provide insights into the mechanism behind the formation of 
optical properties in nodal-line semimetals ZrSiX, and pave the 
way for further optical studies, particularly in the ultraviolet 
spectral range.

Figure 8. Strain-dependent low-energy plasma frequency ωp (black) esti-
mated using Equation (7) for in-plane and out-of-plane directions and 
intraband screening constant p xx p xxω ω=∞ε ( / ), ,

scr 2 (red) calculated for 
the in-plane direction shown as a function of the uniaxial strain. Positive 
and negative values correspond to compression and tension, respectively. 
P1 = −1.3 GPa and P2 = −3.4 GPa are the critical stress values around 
which the electronic Lifshitz transition takes place.

Figure 9. Real part of the optical conductivity σ1 (upper panels) and 
dielectric function ε1 (lower panels) calculated for the in-plane direction 
under a) compressive and b) tensile strain as a function of the photon 
energy ω. The inset figures use logarithmic scale.
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