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Twisted graphene multilayers exhibit strongly correlated insulating states and superconductivity due to the presence of ultraflat
bands near the charge neutral point. In this paper, the response of ultraflat bands to lattice relaxation and a magnetic field in
twisted trilayer graphene (tTLG) with different stacking arrangements is investigated by using a full tight-binding model. We
show that lattice relaxations are indispensable for understanding the electronic properties of tTLG, in particular, of tTLG in the
presence of mirror symmetry. Lattice relaxations renormalize the quasiparticle spectrum near the Fermi energy and change the
localization of higher energy flat bands. Furthermore, different from the twisted bilayer graphene, the Hofstadter butterfly spec-
trum can be realized at laboratory accessible strengths of magnetic field. Our work verifies tTLG as a more tunable platform than
the twisted bilayer graphene in strongly correlated phenomena.
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1 Introduction

When two monolayers stack and twist relative to each other
in a magic angle, a set of peculiar properties are exhibited, for
instance, correlated insulators, unconventional superconduc-
tivity, topological networks, and ferromagnetism [1-8]. In
magic angle twisted bilayer graphene, bands near the Fermi
energy become ultraflat, which are believed to be responsi-
ble for most of these exotic behaviors [9-11]. The realiza-
tion of the flat band can be achieved by varying the rotation
angles between two layers, trilayer rhombohedral graphene
on hexagonal boron nitride and twisted few-layer graphite
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[12-20]. Recent experimental and theoretical works reveal
that topological flat bands are also present in twisted trilayer
graphene (tTLG) [21-24]. The correlated states in the tTLG
can be tuned by twist angles, stacking arrangements and ex-
ternal displacement field [23, 25-27]. This type of flexible
controllability makes twisted trilayer graphene as a new plat-
form to study the tunability of the correlated states in the
twistronics community [28].

Ultraflat bands in the tTLG have been predicted by utiliz-
ing the continuum model [24, 25, 29, 30]. Different from the
twisted bilayer graphene case, electronic properties in tTLG
depend strongly on the original stacking arrangements and
on which layer is twisted [25, 29]. For instance, a set of
dispersive bands coexists with ultraflat bands at charge neu-
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trality and the dispersion of these electronic states is tunable
under external electric fields [29, 31]. Furthermore, the cor-
related states in tTLG with asymmetric stackings are asym-
metric with respect to the external electric field [23, 24].
These exotic properties have also been predicted using a
tight-binding model with fixed nearest-neighbor intralayer
hoppings [31, 32]. In all the above models, the lattice relax-
ations have not been taken into consideration. Recently, the
relaxation effect has been investigated by utilizing a combi-
nation of continuum model and generalized stacking fault en-
ergy methods [26]. It shows that the relaxations renormalize
the quasiparticle spectrum near the Fermi energy and provide
robust energetic stability to the flat bands [26]. More im-
portantly, due to the symmetry and topology differences, the
so-called magic angles for tTLG with different stacking con-
figurations are different [24]. The twisted monolayer-bilayer
system that breaks both twofold rotation and mirror symme-
try, shows correlated insulating states and ferromagnetism
with an associated quantum anomalous Hall effect [21-23],
whereas the mirror-symmetric tTLG shows superconducting
properties [33, 34]. Current theoretical efforts are mainly fo-
cused on the investigation of the electronic band structure and
of the response to an interlayer asymmetric potential, a deep
understanding of the effects of tiny twist angles, lattice relax-
ations, and the magnetic field on the flat bands of the tTLG
with different crystal symmetries is still of fundamental in-
terest.

In this paper, we utilize a full tight-binding model to study
systematically the electronic properties of tTLG in which one
of the three layers is twisted by tiny angles relative to dif-
ferent stacking arrangements. Atomic relaxation is consid-
ered by treating atomic interactions using a classical potential
[35]. Our results show that lattice relaxation is indispensable
for understanding the electronic properties of tTLG with tiny
twist angles. In the tTLG with mirror symmetry, a Dirac cone
coexists with ultraflat bands near the Fermi energy. The offset
energy ∆E (∆E = EDirac−Eflat, the energy difference between
the Dirac point EDirac and the flat bands Eflat) is tunable by the
model parameters in the calculation and may vary from sam-
ple to sample in experiments due to different fabrications and
encapsulations. Such energy difference is relevant in control-
ling the correlated phases. Moreover, for tTLG with mirror
symmetry, the gap between flat bands and the other bands is
robust in the presence of a magnetic field, which is important
in the investigation of the strongly correlated properties and
optical properties.

2 Geometry and model

As shown in Figure 1, we focus on two typical twisted tri-
layers: one is the tTLG-AÃA (top and bottom layers have

mirror symmetry with respect to the middle one and only the
middle layer is twisted with a small angle), the other is the
tTLG-ÃAB (monolayer graphene on the top of AB stack-
ing bilayer graphene and only the top layer has a relatively
small twist angle). The tTLG-AÃA has D3 symmetry and
an extra mirror symmetry with the middle layer as the mir-
ror plane, whereas the tTLG-ÃAB has a reduced C3 symme-
try and breaks both twofold rotation and mirror symmetry.
Some other stacking arrangements are discussed in the Sup-
porting Information. We emphasize that the systems studied
in this paper are different from the “moiré to moiré” systems,
in which the electronic properties can be tuned by two in-
dependent twist angles [28]. Following the same methods
as in twisted bilayer graphene, the tTLG can be constructed
by identifying a common periodicity among the three layers
[36].

The electronic properties of the tTLG are calculated by
using a full tight-binding model based on pz orbitals. The
Hamiltonian has the form:

H =
∑

i

ϵi|i⟩⟨i| +
∑
⟨i, j⟩

ti j|i⟩⟨i|, (1)

where |i⟩ is the pz orbital located at ri, ϵi is the on-site po-
tential, and ⟨i, j⟩ is the sum on indexes i and j with i , j.
The hopping parameter between sites i and j is described by
a distance-related function as [37]:

ti j = n2Vppσ(ri j) + (1 − n2)Vppπ(ri j), (2)

here n denotes the direction cosine of ri j = r j − ri along the
z axis and ri j = |ri j|. The Slater and Koster parameters are
defined as:

Vppσ

(∣∣∣ri j

∣∣∣) = −γ1e2.218(h−|ri j|)Fc

(∣∣∣ri j

∣∣∣) ,
Vppπ

(∣∣∣ri j

∣∣∣) = −γ0e2.218(b−|ri j|)Fc

(∣∣∣ri j

∣∣∣) , (3)

where b and h represent nearest carbon-carbon and inter-
layer distances, respectively, γ0 and γ1 are commonly repa-
rameterized to fit different experimental results, Fc = (1+
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Figure 1 (Color online) The side (upper panel) and top (lower panel) views
of tTLG. (a) tTLG-AÃA-6.01 and (b) tTLG-ÃAB-6.01. The high-symmetry
stackings AAA, ABA, BAB, AAB, and ABC are highlighted by circles of
red, black, blue, purple, and green colors, respectively. The number 6.01
stands for the twist angle 6.01◦.
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e(r−0.265)/5)−1 is a smooth function. We only consider the in-
terlayer hoppings between adjacent layers. When consid-
ering the magnetic field, the hopping ti j has a phase term
which defined by Peierls substitution [38,39]. This full tight-
binding model is accurate enough for both twisted bilayer
and multilayer graphene systems [36, 40].

3 Lattice relaxation effects

We employ the classical simulation package LAMMPS to do
the full relaxation [35]. The intralayer and interlayer inter-
actions are simulated with LCBOP [41] and Kolmogorov-
Crespi [42] potentials, respectively. As illustrated in Fig-
ure 2(a), for the tTLG-AÃA, the relaxation pattern is simi-
lar to that of twisted bilayer graphene. The z component of
the atom positions in the AAA region (red circle in Figure
1(a)) deform up to 0.14 Å in both top and bottom layers,
whereas the atoms in the ABA/BAB regions move toward
out-of-plane only around 0.02 Å [43-45]. Differently, the
atoms in the middle layer that sandwiches between the top
and bottom layers freeze in the z-direction. The atom move-
ments of the top and bottom layers have mirror symmetry
with respect to the middle layer. The deformations are differ-
ent in the tTLG-ÃAB. In the AAB region (the purple circle
in Figure 1(b)), the atoms on the top layer have maximum
movements of 0.1 Å. The atoms on the middle layer also de-
form to minimize the interlayer energy. All in all, the lattice
relaxations are different for samples in the presence or ab-

sence of mirror symmetry.
Mirror symmetry also has a significant effect on the elec-

tronic properties of tTLG. After full relaxations, we find that
the twist angle of tTLG-AÃA has the flattest band shifts from
1.47◦ to 1.35◦, whereas the angle in the tTLG-ÃAB case re-
mains the same 1.05◦ (for the band structure of various twist
angles see the Supporting Information). The magic angle
in tTLG-AÃA is approximately

√
2 times larger than that

in the tTLG-ÃAB. In general, a larger angle corresponds to
higher superconducting Tc [46, 47]. Moreover, as shown in
Figure 2(b) and (d), the lattice relaxations open a bandgap
at the Γ point of the Brillouin zone. The bandgap induced
in tTLG-AÃA-1.35 is about 55.4 meV, which is two times
larger than the gap in relaxed tTLG-ÃAB-1.05 (23.4 meV).
In the tTLG-AÃA-1.35 where mirror symmetry is retained,
the ultraflat bands and Dirac cone still coexist. Comparing
with the rigid case, the offset energy ∆E decreases from 18.8
to 8.4 meV, and the Fermi velocity of the Dirac cone de-
creases from 8.52 × 105 to 4.82 × 105 m/s [48]. Note that
the Dirac cone is below the flat bands here, which is different
from the previous results where the Dirac cone is above the
flat bands [26, 32]. We will discuss the difference later.

Now we investigate the localization of the states in the
tTLG with different stacking arrangements. This can be char-
acterized by the inverse participation ratio (IPR), which is de-
fined as

∑N
i=1 |ai|2/(N

∑N
i=1 |ai|4), where ai is the state at site i

and N is the total number of sites. Small values of the IPR
correspond to localized states in the tTLG. From the results
in Figure 2(b) and (e), it is clear that the flat bands have a
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Figure 2 (Color online) Lattice relaxation effects in twisted trilayer graphene. (a), (d) The out-of-plane displacement; (b), (e) the band structure with the
inverse participation ratio (IPR) represented by colors; (c), (f) the layer-projected weights of band eigenstates represented by the thickness of the lines in
tTLG-AÃA-1.35 and tTLG-ÃAB-1.05, respectively. The hopping parameters are γ0 = 3.2 eV and γ1 = 0.48 eV.
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higher degree of localization than the other bands. Further-
more, lattice relaxation reduces the localization of the flat
bands. Let us focus on the IPR of tTLG-AÃA-1.35. The
states near the Dirac cone have similar localization to the flat
bands in both rigid and relaxed cases. However, as reported
in ref. [32] where only constant nearest-neighbor intralayer
hoppings were considered in the tight-binding model, these
states have less localization than the flat bands. Both the lo-
calization and position of the Dirac cone are sensitive to the
intralayer hoppings [26]. To better understand the band struc-
ture of the tTLG with different symmetries, we plot the layer
projection weights of band eigenstates in Figure 2(c) and (f).
In the relaxed tTLG-AÃA-1.35 with mirror symmetry, the
states near the Dirac cone are only in the middle layer and
the rest of the states in the dispersive bands are only in the
outmost layers. The outmost layer weights are always iden-
tical. The states of the flat bands are present in all three lay-
ers and with 50% weight in the middle layer. In contrast, in
the relaxed tTLG-ÃAB-1.05, the ultraflat bands have a large
amount of weight from both top and middle layers, which
implies an entanglement between these two layers.

We calculate the local density of states (LDOS) mapping

to further investigate the localization of the states in real-
space. As shown in Figure 3, we focus on the states of three
peaks near charge neutrality. For unrelaxed tTLG-AÃA-1.35
superlattice, the three different types of quasi-eigenstates (a
superposition state of degenerate eigenstates) [38] in Figure
3(b) are mainly around AAA stacking regions which is simi-
lar to the twisted bilayer graphene case [36]. A large amount
of flat band states localize in the middle layer, which is con-
sistent with the layer-projected weights in Figure 2(c). More
specifically, the neutral point states locate exactly in the AAA
stacking regions whereas the other two smaller Van Hove sin-
gularity states are around the AAA regions. Moreover, the
quasi-eigenstates of the top and bottom layers show mirror
symmetry which could reflect consistently the mirror sym-
metry of the tTLG-AÃA structure [49]. After lattice relax-
ation, two gaps with values of 50 meV appear at the Γ point
near the Fermi level in Figure 3(a). We can see two smaller
Van Hove singularities move toward a higher energy range
with its corresponding states changing localizations from the
AAA adjacent regions to the ABA/BAB stacking regions.
Similar to the twisted bilayer case, the ABA/BAB regions ex-
pand to minimize the intralayer energy. As shown in Figure

(a) (b) (c)

(d) (e) (f)

E−Ef (eV)

E−Ef (eV)

Figure 3 (Color online) Calculated local density of states (LDOS) mappings of different energies in the tTLG. The density of states (DOS) of (a) tTLG-
AÃA-1.35 and (d) tTLG-ÃAB-1.05. (b), (c) LDOS mappings of tTLG-AÃA-1.35 without and with lattice relaxations, respectively. Energies of the LDOS are
selected near the Fermi energy in (a). (e), (f) LDOS mappings of tTLG-ÃAB-1.05 without and with relaxations, respectively. Energies of the LDOS pick up
from the three peaks near the Fermi energy in (d). The hopping parameters are γ0 = 3.2 eV and γ1 = 0.48 eV.
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3(b) and (c), this effect is achieved by a clockwise rotation of
the moiré pattern in the outmost layers and a counterclock-
wise rotation of the moiré pattern in the middle layer around
the AAA regions [26].

The LDOS mappings in the tTLG-ÃAB-1.05 are com-
pletely different from those in the tTLG-AÃA-1.35. Com-
paring the results in Figure 3(e) and (f), it is clear that the
lattice relaxations have minor changes to the localization of
the flat band states. Moreover, the neutral point states are
mainly localized in the top and middle layers, which indi-
cates that the formation of flat bands in the Fermi energy is
due to the interlayer interaction between the top and middle
layers. The quasi-eigenstates of the other two peaks have a
large part in the bottom layer in both unrelaxed and relaxed
cases. Such LDOS mapping can be detected by a local probe
such as scanning tunneling microscopy.

4 Shift of the Dirac cone

A key feature in the tTLG-AÃA is the coexistence of flat
bands with a Dirac cone in close proximity to one another in
the band structure. However, in the theoretical results, some
studies predict the Dirac cone above the flat bands and some
show it below [26, 29, 32-34]. Therefore, it is important to
understand the origin of the offset energy ∆E. Due to the
electron hole asymmetry, the monolayer and twisted bilayer
graphene has an energy offset, which can be safely ignored
by shifting the Fermi energy to zero after the band structure
calculations are performed. However, the twisted trilayer is
different. In the tTLG-AÃA, the flat bands have a modified
Fermi energy due to the interlayer interaction and the decou-
pled Dirac cone preserves the monolayer energy reference,
which results in a relative offset between the flat bands and
the Dirac cone [26].

In the monolayer, the Dirac cone is very sensitive to the
model details. The parameters in the full tight-binding model
can essentially influence the energy position of the Dirac
cone. When the intralayer interaction is far beyond the
nearest-neighbor hopping in the tight-binding model, in the
calculated band structure, the Dirac cone shifts from zero
to a deep negative energy and the electron-hole symmetry
is broken. Similarly, comparing the band structures in Fig-
ure 4(c) and Figure 2(b), the Dirac cone shifts from 18.8
to −23.6 meV. In the above band structures, we only mod-
ify the intralayer hopping terms in the calculations. More-
over, as shown in Figure 4(a) and (b), the ∆E varies with
hopping parameters γ0 and γ1. We observe the flat bands
piercing the Dirac cone when the γ1 changes from 0.48 to
0.32 eV. It has been proven that the e-e interactions or ex-
trinsic effects shift the Dirac cone down to the flat bands’

Fermi energy [26]. This can be realized in the tight-binding
model by reducing the interlayer hopping γ1 between the
A or B sublattice of monolayer graphene to 0. The calcu-
lated band structure is illustrated in Figure 4(d). The ∆E
changes from 18.8 to 0 meV. From an experimental point of
view, the ∆E can be tuned by extrinsic factors, for instance,
the way samples are prepared, the atomic force microscope-
brooming procedure, and hexagonal boron nitride encapsu-
lation. Such offset energy can be confirmed experimentally
in the magnetotransport results under a perpendicular mag-
netic field. Consequently, the value of the offset energy pro-
vides information about the strength of the hopping interac-
tion, the Fermi velocity of the Dirac cone and the many-body
effects of the system. Moreover, by knowing the tendency
of ∆E, the relative position of the Dirac point and flat bands
can be precisely controlled in an experiment. Recent exper-
iments prove that the existence of the Dirac cone allows us
to control the bandwidth of the flat band, and the electrons
in the Dirac bands may participate in the correlation-driven
phenomena in the flat bands via the Coulomb interactions
[33,34]. It is still unclear if the ∆E will affect the correlation-
driven phenomena in mirror-symmetric tTLG. Moreover, by
realizing the coexistence of both strongly localized and ultra-
mobile quasiparticles in the tTLG-AÃA, we may observe a
much higher superconducting Tc due to the “steep band/flat
band” scenario of superconductivity, which is quite different
from the superconductivity in the twisted bilayer graphene
[26, 50].

5 The magnetic field effect

How will the electronic states respond to an external perpen-
dicular magnetic field in tTLG with or without mirror sym-
metry? To answer this question, we plot in Figure 5 the Hof-
stadter butterfly spectrum of tTLG in the presence of strong
magnetic fields. The quantized energy spectrum of tTLG in
the magnetic field is quite different for different stackings.
In the tTLG-AÃA-1.35, the Hofstadter butterfly spectra are
apparent at a small field of 4 T. We can also see an obvious
electron-hole asymmetry of the states responding to the ex-
ternal magnetic field. Compared with the rigid cases shown
in the Supporting Information, two gaps flanking the cen-
tral peak are obvious in Figure 5. The Landau levels (LLs)
in the tTLG-ÃAB-1.05 are characterized by a more compli-
cated fractal energy spectrum. It needs a stronger magnetic
field to realize apparent Hofstadter butterfly spectra. This is
ascribed to different interlayer interactions in tTLG with dif-
ferent stacking arrangements. Previous results show that the
interlayer coupling plays a crucial role in the formation of
Hofstadter butterfly spectra [51]. From the results in Figures
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Figure 4 (Color online) Variations of the offset energy ∆E in the relaxed tTLG-AÃA-1.35. (a) The band structure obtained with γ0 = 3.2 eV and γ1 =

0.32 eV; (b) the evolution of the ∆E with different γ0 (fixed γ1) and different γ1 (fixed γ0) illustrated in the blue and red lines, respectively; (c) the band
structure calculated with only the nearest-neighbor intralayer hoppings; (d) the band structure calculated by assuming that the interlayer hoppings of A and B
sublattices between two layers are reduced to zero.
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Figure 5 (Color online) Hofstadter’s butterflies of relaxed tTLG-AÃA-1.35 (a) and tTLG-ÃAB-1.05 (b) with magnetic field less than 20 T, respectively.

2 and 3, it is obvious that the interlayer interaction in tTLG-
AÃA is much stronger than that in tTLG-ÃAB. The flatness
of the low energy bands and the localization of these states
efficiently affect the properties of the LLs in the presence of a
magnetic field. Furthermore, the magnitude of the magnetic
field for the occurrence of the Hofstadter butterfly spectra in
tTLG is much smaller than the reported value in twisted bi-
layer graphene [51]. In twisted bilayer graphene near the
magic angle, the higher indices of the LL start to appear at a
field of 30 T. A notable feature is that the Hofstadter butter-
fly spectrum is an example to exhibit fractal properties in the
tTLG. It could be observed at laboratory accessible magnetic
field strengths.

6 Conclusion

We systematically investigated the ultraflat bands in tTLG
with different stacking arrangements. We found that the
tTLG with or without mirror symmetry has a quite differ-
ent response to lattice relaxations and a magnetic field. In
particular, for mirror-symmetric tTLG-AÃA, the electronic
properties are significantly changed when the lattice relax-
ations are considered, and the gap between the flat bands and
the other bands is robust in the presence of magnetic fields.
Moreover, the energy offset between the flat bands and the
Dirac cone vertex is sensitive to the parametrization of the
model, which corresponds to the extrinsic factors introduced
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during the experiment. In the tTLG-ÃAB with a reduced
crystal symmetry, the Dirac cone disappears when the twist
angle is tiny, and the lattice relaxations have less influence
on its electronic properties. Furthermore, the flat bands are
robust under a laboratory reachable magnetic field. Although
we do not calculate the correlation strengths directly, we can
use the tunable flat bands at charge neutrality as a proxy for
the electronic correlation, and provide a starting point to ex-
plore the interplay between the flat bands, mirror symmetry,
magnetic field, dispersive states and correlation in tTLG.
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