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Recent progress in the controllable functionalization of graphene surfaces enables the experimental realization
of complex functionalized graphene nanostructures, such as Sierpinski carpet (SC) fractals. Herein, we model
the SC fractals formed by hydrogen and fluorine functionalized patterns on graphene surfaces, namely, H-SC and
F-SC, respectively. We then reveal their electronic properties and quantum transport features. From the calculated
results of the total and local densities of state, we find that states in H-SC and F-SC have two characteristics:
(i) low-energy states inside about |E/t | � 1 (with t as the nearest-neighbor hopping) are localized inside free
graphene regions due to the insulating properties of functionalized graphene regions and (ii) high-energy states
in F-SC have two special energy ranges including −2.3 < E/t < −1.9 with localized holes only inside free
graphene areas and 3 < E/t < 3.7 with localized electrons only inside fluorinated graphene areas. The two
characteristics are further verified by the real-space distributions of normalized probability density. We analyze
the fractal dimension of their quantum conductance spectra and find that conductance fluctuations in these
structures follow the Hausdorff dimension. We calculate their optical conductivity and find that several additional
conductivity peaks appear in high-energy ranges due to the adsorbed H or F atoms.

DOI: 10.1103/PhysRevB.105.205433

I. INTRODUCTION

A fractal has a hierarchically self-similar block structure
quantified by the noninteger Hausdorff dimension dH [1–4].
The unique self-similarity endows fractal nanostructures with
a wealth of exotic and interesting physical features on elec-
tronic energy spectrum statistics [5–8], quantum transport
properties [9–16], plasmons [17], flat bands [18–21], and
topological phases [22–26]. Recently, nanoscale fractal struc-
tures, such as Sierpinski carpets (SC) and gaskets with atoms
or molecules as building units, have been achieved by the
bottom-up nanofabrication methods, including molecular self-
assembly [27–33], chemical reactions [34], template packings
[35], and atomic manipulations in a scanning tunneling mi-
croscope [36–38]. In addition, SC nanostructures can also be
created with arrays of waveguides [39]. Alternatively, top-
down external field modulation is another feasible method for
generating large-scale fractal structures. Specifically, an ex-
ternal electric field is applied to two-dimensional materials so
as to construct an electric-field-modulated SC fractal pattern
[14]. However, the electrostatic fluctuation is induced by the
gate method. Therefore, other external modulation manners
generating robust fractal patterns and their transport properties
need to be investigated.

In addition to its intrinsic Dirac physics, graphene is
also an ideal engineering platform for searching new physi-
cal phenomena, because its two-dimensional (2D) membrane
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surface is easy to be coupled with external electric and mag-
netic fields, mechanical tension and bending, atom vacancy,
and chemical functionalization. Specifically, hydrogenated
graphene [40] and fluorinated graphene [41,42] not only
have high stability but also have a considerable band gap
with 3.5–5.7 eV [43–46] and 3.1–7.5 eV [47–53], re-
spectively. Hydrogenated graphene has been produced by
using atomic hydrogen beams [40,54,55] or exposure to
hydrogen-based plasmas [56,57]. Fluorinated graphene has
been synthesized by direct gas-fluorination [41,42], plasma
fluorination [58,59], hydrothermal fluorination [60,61], or
photochemical/electrochemical methods [62]. Furthermore,
functionalized regions in the graphene membrane can be
chemically controlled [63–67]. Therefore, it is highly possible
to fabricate functionalized graphene SC fractal structures.

In this work, we model the SC fractals by using hydrogen
and fluorine functionalization on the surface of graphene,
namely, H-SC and F-SC, respectively. We investigate their
electronic properties and quantum transports. Calculated re-
sults of the local and total density of states (LDOS and
TDOS) indicate two remarkable characteristics: (i) at the low
energy range about |E/t | � 1 (t = 2.8 eV as the nearest-
neighbor hopping), electrons and holes are confined inside
free graphene regions because of the insulating properties of
functionalized graphene parts; and (ii) at higher energy, in
F-SC there exist two energy ranges, including −2.3 < E/t <

−1.9 where holes are localized only inside free graphene
areas and 3 < E/t < 3.7 where electrons are localized only
inside fluorinated graphene areas. Analyses on real-space
distributions of normalized probability density further ver-
ify the two characteristics. We discuss the fractal dimension
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FIG. 1. An illustration of graphene-based SCs. (a) A SC sample
generated by atom vacancies with the iteration number I = 2 and the
square width W = 32.5a with a as the lattice constant of graphene.
(b) A schematic of the functionalized SC by the surface adatoms in
corresponding zones, i.e., Area II with hydrogen or fluorine denoted
by red color balls. The zoom-in figures show spatial lattice structures
inside Area I in (c) and inside Area II from top and side views in
(d) and (e), respectively.

of their conductance spectra and find that conductance fluc-
tuations follow the Hausdorff fractal dimension. In these
functionalized graphene SC fractals, additional multiple op-
tical conductivity peaks appear in high energy ranges due to
the adsorbed H or F atoms.

II. MODEL AND METHODS

We investigate two kinds of graphene-based SC structures,
including the SC generated by atom vacancies in Fig. 1(a) and
the SC functionalized by hydrogen or fluorine in Fig. 1(b). For
convenience in later discussions, we denote the SC formed
by atom vacancies as A-SC, and we name the SC formed by
hydrogenated- and fluorinated-graphene as H-SC and F-SC,
respectively. The functionalized SC structures generally have
partly out-of-plane distortions induced by adsorbed atoms
[53], for instance, as presented in Figs. 1(d) and 1(e), where
I = 2 is the iteration number and W = 32.5a is the square
width with a as the lattice constant of graphene. Electrons
in these graphene-based SCs are described by the following
tight-binding Hamiltonian

H =
∑

〈i j〉αβ

t i j
αβc†

i,αc j,β +
∑

iα

εi
αni,α, (1)

where i, j are site indices, 〈i j〉 represents nearest-neighbor
sites, atomic orbitals are marked with notation α and β, and
c†

i,α (ci,α) creates (annihilates) fermions with orbital α at site i.
Electron hopping between various sites is described in the first
term, and the second term gives the on-site potential. When
SC changes from the Ith iteration to the (I + 1)th iteration, the
unit is replicated with N = 8 times larger in area and L = 3
times larger in width. The Hausdorff dimension is defined by
dH ≡ logL N � 1.89.

The distinctions between H-SC and F-SC mainly lie on the
spatially structural distortion and the types of orbitals. Con-
sidering that the hybridization between hydrogen and carbon
atoms involves only 1s orbital of hydrogen and 2pz orbital
of carbon, we adopt the π -band TB model for H-SC. The
nearest-neighbor hopping between carbon atoms is labeled by
t i j
pz pz = t , the nearest-neighbor hopping between carbon and

hydrogen is t i j
pzs = 2t , and the on-site potentials are εi

pz
= 0

and εi
s = −t/16 [68,69]. However, the hybridization between

fluorine and carbon atoms involves multiple orbitals, includ-
ing 2s, 2px, 2py, and 2pz orbitals from carbon and 2px, 2py,
and 2pz orbitals from fluorine. We use the multiple-orbital TB
model for F-SC and adopt the parameters obtained from the ab
initio density-functional theory calculations (see the details in
Appendix A) [53].

We use the tight-binding propagation method (TBPM) to
calculate the density of states (DOS). We start the evolution
of a quantum system with a random initial state |ϕ(0)〉, which
is normalized superposition of all basis states

∑
n An|n〉. The

DOS is calculated via Fourier transform of the correlation
function [69,70]

D(E ) = 1

2π

∫ ∞

−∞
eiEt 〈ϕ(0)|e−iHt |ϕ(0)〉dt . (2)

After the Fourier transform of states at different time during
the evolution |ϕ(t )〉 = e−iHt |ϕ(0)〉, we obtain the quasi-
eigenstates |ψ (E )〉 by [69,71]

|ψ (E )〉 = 1

2π

∫ ∞

−∞
dteiEt |ϕ(t )〉

= 1

2π

∑
n

An

∫ ∞

−∞
dtei(E−En )t |n〉

=
∑

n

Anδ(E − En)|n〉,

(3)

which can be further normalized as

|ψ (E )〉 = 1√∑
n |An|2δ(E − En)

∑
n

Anδ(E − En)|n〉. (4)

For the finite fractal structure, one can make an average by
different realizations of random coefficients An to obtain more
accurate results of D(E ) and |ψ (E )〉.

We use the Kubo formula to obtain the real part Re[σαβ (ω)]
of the optical conductivity [69,72,73], as follows:

Re[σαβ (ω)] = lim
ε→0+

e−h̄ω/kBT − 1

h̄ω�

∫ ∞

0
e−εt sinωt

× [2Im〈ϕ2(t )|Jα|ϕ1(t )〉β]dt, (5)

where α, β = x, y, � is the area of the SC sample, and the
current operator is written as Jα = − ie

h̄

∑
i, j ti j (r j − ri )αc†

i c j .
Here, ϕ1(t ) and ϕ2(t ) have following definitions [69,74]:

|ϕ1(t )〉x = e−iHt/h̄[1 − f (H )]Jx|ϕ〉, (6)

|ϕ1(t )〉y = e−iHt/h̄[1 − f (H )]Jy|ϕ〉, (7)

|ϕ2(t )〉 = e−iHt/h̄ f (H )|ϕ〉, (8)
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FIG. 2. (a) DOS of A-SC for various iterations I ranging from two to five. (b) DOS and LDOS of H-SC with I = 4 and W = 297.5a.
(c) DOS of F-SC with I = 4 and W = 297.5a. In (b) and (c) the DOS of A-SC is added for comparisons.

where f (H ) = 1
eβ(H−μ)+1 is the Fermi-Dirac distribution

operator.
The quantum conductance as an auxiliary quantity with

the help of box-counting analysis [75] is calculated by the
Landauer formula [76]

Gab = e2

h

∑
i∈a, j∈b

|Si j |2, (9)

where Si j is the scattering matrix with a and b denoting two
electrodes.

III. RESULTS AND DISCUSSION

In this section, we discuss DOS, quantum conductance
and optical conductivity of A-SC, H-SC, and F-SC structures
and make comparisons with each other. First, we analyze the
TDOS and LDOS in the three structures. Then, we calculate
quasi-eigenstates and discuss their real-space probability den-
sity distribution. Next, we calculate the quantum conductance
of A-SC and H-SC structures without considering the lattice
vibration and compare their results with that of the SC formed
by a local electric field [14]. We further estimate the fractal
dimension of their conductance spectrum by the box-counting
algorithm [75]. At last, we discuss the optical absorption
properties of these considered structures and compare them
with each other.

A. DOS

Figure 2(a) shows the DOS of A-SC as a function of energy
under various iteration numbers I ranging from 2 to 5. As we
can see, the DOS relatively changes little after I � 4. Hence,
we mainly choose I = 4 to produce these SC structures so as
to later explore their electronic and transport features in these
exotic fractal systems. For the DOS of A-SC in Fig. 2(a), we
can observe two characteristics: (i) two sharp peaks appear
at E/t = ±1, which are the Van Hove singularities similar to
those of pristine graphene and (ii) an additional central peak
exists at E/t = 0, which is absent in pristine graphene and
reflects the edge states induced by the zigzag terminations in
the A-SC structure.

Using Eq. (2), we further calculate the DOS of H-SC
and F-SC fractal structures with I = 4 and plot the results

in Figs. 2(b) and 2(c), respectively. Inside the low energy
range about −1 � E/t � 1, we can clearly see the DOS is
mainly contributed by LDOS of Area I in both H-SC and
F-SC structures. In addition, the DOS of H-SC and F-SC are
almost the same as that of A-SC except a little deviation of the
DOS of F-SC near E/t ∼ −1 because some states appear into
fluorinated Area II, as shown in the inset in Fig. 2(c). These
compared results indicate that, even though various orbitals
of C and F atoms are taken into account, the states inside the
low energy regions about −1 � E/t � 1 are contributed to
by the pz orbital of C atoms in these fractal structures. In
addition, these compared results reflect the fact that, inside
the low energy range these states in both H-SC and F-SC
fractal structures are confined inside Area I. In other words,
the hydrogenated or fluorinated Area II in Figs. 2(b) and
2(c) play the same role as atom vacancies in Fig. 2(a) for
electrons inside the low energy range. These results can also
be explained by the insulating features of fully hydrogenated
and fluorinated graphene [53,69], which forbid the penetration
of low energy states into Area II. In this respect, we say that
H-SC and F-SC are effective analogues of A-SC. For less
perfect adatom positions with weak defect densities ρ less
than 3%, the confinement of low-energy states inside Area I
can be remained (see Appendix B). We figure out that these
dangling s, px, and py orbitals of C atoms at edges must be
saturated if a multiple-orbital TB model is adopted for the
A-SC structure, otherwise, unreasonable DOS results will be
given inside low energy regions. In F-SC, these inner orbitals
are naturally saturated by p orbitals of F atoms. Consequently,
the pz orbital TB model effectively captures the low energy
physics in these fractal structures.

At higher energy ranges in Figs. 2(b) and 2(c), from the
LDOS in Area II we can see that states apparently exist in
Area II for both H-SC and F-SC structures. These compared
results between the DOS of functionalized SC structures and
the DOS of the A-SC structure indicate that these states are
also contributed to by the other orbitals from hydrogen or
fluorine inside higher energy regions at |E/t | > 1. For H-SC
in Fig. 2(b), we can see that additional Van Hove singularities
appear at about |E/t | = 1.5 and 2.5, as well as other higher
energy positions. For F-SC in Fig. 2(c), various additional Van
Hove singularities emerge at several higher energy positions.
The electron-hole symmetry is obviously broken by p orbitals
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(a) (c) (e)

(b) (d) (f)

A-SC  E/t = 0 A-SC  E/t = 0.13 H-SC  E/t = 0.55

H-SC  E/t = 0 H-SC  E/t = 0.13 H-SC  E/t = 1.4

FIG. 3. The real-space distributions of normalized probability density of states at E/t = 0 for A-SC in (a) and H-SC in (b), at E/t = 0.13
for A-SC in (c) and H-SC in (d), and at E/t = 0.55 in (e) for H-SC and E/t = 1.4 in (f) for H-SC. Here I = 4 and W = 297.5a for both A-SC
and H-SC.

of fluorine and px and py orbitals of carbon. This is different
from that in H-SC, where the spherical s orbital of hydrogen
remains the electron-hole symmetry. As a result, inside higher
energy regions, electronic states will exhibit different behav-
iors in functionalized SC structures compared with that in the
A-SC structure, such as state distributions in real space and
optical absorptions, which will be discussed later. In addition,
we can see two special high energy ranges denoted by two
arrows in F-SC: (i) at about −2.3 < E/t < −1.9, where holes
are mainly located inside Area I, and (ii) at about 3 < E/t <

3.7, where electrons are mainly located inside Area II. This
means that we can choose energy windows to localize holes
and electrons in corresponding Area I and Area II in F-SC
fractal structure.

B. Quasi-eigenstates

Figure 3 presents the real-space distribution of normalized
probability density of states in A-SC and H-SC fractal struc-
tures. We first discuss the probability density distributions
of zero-energy states in Fig. 3(a) for A-SC and in Fig. 3(b)
for H-SC. Obviously, these nonzero probability densities are
mainly located at the zigzag terminations. Therefore, the cen-
tral peaks at zero energy in Figs. 2(a) and 2(b) correspond to
the edge states [14]. For the low energy states in Figs. 3(c)
to 3(e), these nonzero probability densities are localized
inside Area I. Some states in H-SC and A-SC can possi-
bly exhibit very similar probability density distributions, for
instance, the states at E/t = 0.13 in Figs. 3(c) and 3(d). It is
a fact that an arbitrary state in A-SC structure can impossi-
bly appear inside these regions of atom vacancies. However,

these states with higher energy can exist in functionalized
SC structures, as presented in Figs. 2(b) and 2(c). We also
calculate the probability density distribution of high-energy
states in H-SC, for instance, the state at E/t = 1.4, as shown
in Fig. 3(f). There are apparent nonzero probability densities
inside Area II, and hence these high-energy extended states
in H-SC are remarkably different from those in A-SC. In
this situation, H-SC can not be viewed as an effective fractal
of A-SC.

For the F-SC fractal structure, the real-space distributions
of normalized probability density of states at various energy
are shown in Fig. 4. Because the zero-energy state in F-SC
has a broadening compared with that of A-SC [see the inset of
Fig. 2(c)], the nonzero probability densities of the zero-energy
state appear not only at structural edges but also inside Area I,
as shown in Fig. 4(a). For low energy regions, even at E/t =
0.96 in Fig. 4(b), electrons are still localized inside Area I, due
to the wider band gap of fluorinated graphene [53]. To present
the electron-hole asymmetry in F-SC, as an example, we cal-
culate the probability densities of the states at E/t = −1.5
and E/t = 1.5 and plot the results in Figs. 4(c) and 4(d),
respectively. We can see that the states at E/t = −1.5 are
located inside fluorinated Area II, but the states at E/t = 1.5
are still mainly inside Area I. At last, we check the states
inside the two energy windows in which hole and electron
are respectively localized as shown in previous Fig. 2(c). We
plot the real-space distributions of the normalized probability
density for states at E/t = −2.0 and E/t = 3.3 in Figs. 4(e)
and 4(f), respectively. Indeed, inside the two energy windows,
the hole state is localized well inside Area I and the electron
state is localized inside Area II.
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(a) (c) (e)

(d)

F-SC  E/t = 0 F-SC  E/t = -1.5 F-SC  E/t = -2.0

F-SC  E/t = 0.96 F-SC  E/t = 1.5 F-SC  E/t = 3.3(b) (f)

FIG. 4. The real-space distributions of normalized probability density of states for F-SC at E/t = 0 in (a), E/t = 0.96 in (b), E/t = −1.5
in (c), E/t = 1.5 in (d), E/t = −2 in (e), and E/t = 3.3 in (f). Here I = 4 and W = 297.5a for F-SC.

C. Conductance fluctuations

Generally, the fractal dimension is embodied in quantum
transports. Consequently, there is a close correlation between
conductance fluctuations and the geometrical dimension of
fractals [10]. In addition, conductance fluctuations are also ob-
served in generic chaotic cavities [77], quantum billiards [78],
quasi-ballistic gold nanowires [79], and diffusive/ballistic
semiconductor devices [80]. For a fractal such as SC with
an infinite ramification number [2], the box-counting dimen-
sion of the conductance fluctuations is generally equal to the
Hausdorff dimension, which has been checked theoretically
[10]. Besides, this correlation is still approximately valid for
a fractal with a finite but relatively large ramification number,
namely, I � 4 [10,14].

Detailed calculations on the quantum conductance are
implemented in KWANT [76] by Eq. (9). Here we discuss
conductance fluctuations in three fractal structures, includ-
ing H-SC, A-SC, and the SC formed by local electric field
modulation with V = 10t [14]. The conductance calculation
of F-SC is not performed since the matrix dimension in F-SC
for I = 4 is beyond the calculation limit in KWANT.

Figure 5(a) shows the calculated conductance G(E ) as a
function of energy E for the considered three structures with
I = 4 and W = 297.5a, where the middle lead configurations
are shown in Fig. 5(b). We can see a remarkable conductance
gap of G(E ) where the conductance vanishes in Fig. 5(a).
The conductance gap is a hallmark of electronic transports in
graphene-based fractal structures [10,14]. There are several
minor conductance peaks inside the conductance gap in the
SC formed by a local electric field even with large potential
magnitude of V = 10t . Therefore, we should figure out that
the SC generated by a local electric field (V = 10t) is not
a perfect equivalent fractal of A-SC even inside low energy

regions. However, both H-SC and A-SC exhibit a perfect
conductance gap in low energy regions.

When energy E stays away from the central area, the
conductance spectrum contains many fluctuations, making the
conductance curve quite noisy. The fluctuations can be charac-
terized by the dimension of the whole conductance spectrum.
The dimension of the conductance spectrum is obtained by
the box-counting algorithm [75]. We count the number N of
the box of different size r such that the box continuously
and completely covers the graph of conductance for H-SC
and A-SC in Fig. 5(a). The box-counting results of the log
value of counting number N as a function of the minus log
value of box size r are plotted in Fig. 5(c). For large values
of r, where − log10(r) is around 0, the box is too large to
grasp the features of the conductance fluctuations. For very
small r below ∼10−4, i.e., − log10(r) � 4, each box covers
only one data point due to very small size so that N is not
increased anymore but turns to be invariant, namely, saturated.
There is an intermediate r called as the “scaling region,”
where the scaling between log10 N[− log10(r)] and − log10(r)
is linear in the plot. The slope of log10 N[− log10(r)] as a
function of − log10(r) inside the “scaling region” from 2 to
3, i.e., the box-counting dimension, is extracted, as shown
in Fig. 5(c). The extracted values of box-counting dimension
are dH−SC = 1.8453 and dA−SC = 1.8428 for H-SC and A-SC,
respectively. The Hausdorff dimension is given by dH = 1.89
for our considered SC fractals. Our results in A-SC and H-SC
with I = 4 are close to the Hausdorff dimension dH. We might
possibly further infer that the slight difference between the
box-counting dimension and Hausdorff dimension will vanish
if the ramification number is infinite.

We also consider the position effects of leads on the con-
ductance spectrum and box-counting dimension in Figs. 5(d)
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FIG. 5. (a, d) Conductance G(E ) in units of e2/h as a function of energy E in H-SC, A-SC, and the SC formed by applying an external
electric field with V = 10t , where I = 4 and W = 297.5a. The lead (L) configurations are correspondingly at (middle/middle, bottom/top)
positions as sketched in (b, e), where lead width is (3 + 2

√
3

3 )a. (c, f) Box-counting algorithm analysis of the conductance fluctuations for (a,
d).

and 5(e). We can see similar conductance gaps and fluc-
tuations. The box-counting dimension results change little.
Consequently, we think that the lead position has a weak
influence on transport features of A-SC and H-SC with a
relative large ramification number.

D. Optical conductivity

We further investigate the optical conductivity of the A-SC,
H-SC, and F-SC fractal structures. Using Eqs. (5) to (8), we
calculate the optical conductivity σxx as a function of ω/t
and plot the real part of optical conductivity in Fig. 6, which

FIG. 6. Real part of optical conductivity σxx of H-SC in (a) and
F-SC in (b) as a function of photon energy h̄ω/t at μ = 0 and T =
300 K. The σxx of A-SC is also added for comparisons. Here I = 4
and W = 297.5a for all SC structures.

corresponds to the optical absorption. When ω/t is about
below 2.1, A-SC, H-SC, and F-SC exhibit very close opti-
cal conductivity behaviors. Except for additional few peaks
around ω/t ∼ 1 the almost constant value of the optical con-
ductivity inside low frequency is similar to the universal value
of pristine graphene [69]. The LDOS of Area II in H-SC and
F-SC has a band gap of about 2t [see Figs. 2(b) and 2(c)],
which leads to zero optical conductivity when the ω is below
2t . Thus, the optical properties of H-SC and F-SC at low
frequency range are actually dominated by the clean graphene
in Area I.

However, various absorption peaks in H-SC and F-SC
structures appear inside a higher frequency range. For in-
stance, the additional three peaks appear around ω/t = 3.1,
4.1, and 5.1 in H-SC due to the adsorbed H atoms. For F-
SC, the optical conductivity at higher frequency range exhibit
several strong absorption peaks, which are also predicted in
fully fluorinated graphene [53]. In other words, functionalized
F-SC fractal structures interestingly inherit the low frequency

TABLE I. Slater-Koster matrix elements as a function of two-
center bond integrals.

tss Vssσ

tspx lVspσ

tpx px l2Vppσ + (1 − l2)Vppπ

tpx py lm(Vppσ − Vppπ )
tpx pz ln(Vppσ − Vppπ )
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TABLE II. Direction cosines between diverse atom positions in
graphene and fully fluorinated graphene (i.e., fluorographene). Here,
δF is the vector of the adjacent upper F atom of the central C atom.

Graphene Fluorographene

δi li mi ni li mi ni

δ1 0 1 0 0 +0.964 −0.265
δ2 −√

3/2 −1/2 0 −0.835 −0.482 −0.265
δ3 +√

3/2 −1/2 0 +0.835 −0.482 −0.265
δF 0 0 0 0 0 1

optical properties of pristine graphene and the higher fre-
quency optical properties of fully fluorinated graphene.

IV. SUMMARY

In summary, we investigated the DOS, real-space dis-
tributions of normalized probability density, conductance
fluctuations and optical conductivity of H-SC and F-SC fractal
structures. Our DOS results show that low-energy states with
|E/t | � 1 in H-SC and F-SC are mainly located inside free
graphene regions because of the insulating properties of func-
tionalized graphene regions. High-energy states in F-SC have
two special energy ranges including −2.3 < E/t < −1.9 with
holes localized only inside free graphene and 3 < E/t < 3.7
with electrons localized only inside fluorinated graphene ar-
eas. Our analyses on real-space distributions of normalized
probability density supply a remarkable proof supporting the
two characteristics. Calculated results of the fractal dimen-
sion of the conductance spectrum indicate that conductance
fluctuations in H-SC and A-SC follow the Hausdorff frac-
tal dimension behavior. Thus H-SC and F-SC indeed form
the fractal dimension space. We also investigate the optical
conductivity of H-SC and F-SC and find several conductivity
peaks in high energy ranges as a result of adsorbed H or F
atoms.

TABLE III. Hopping and on-site potential parameters for
graphene in the upper panel and for fluorographene in the lower
panel. All these values are in units of eV.

Graphene Fluorographene

εs −2.85 −5.54
εpxy +3.20 +2.31
εpz +0.00 +4.92
Vssσ −5.34 −3.65
Vspσ +6.40 +7.20
Vppσ +7.65 +7.65
Vpxy pzσ +0.00 +2.20
Vpxy pxyπ −2.80 −2.64
Vpxy pzπ +0.00 −2.80
Vpz pzπ −2.80 −1.87
εF

pxy
−4.94

εF
pz

−1.69
V C−F

spσ +1.06
V C−F

ppσ +9.85
V C−F

ppπ −2.25

FIG. 7. DOS of H-SC with different defect concentrations ρ.
Here, I = 4 and W = 297.5a.
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APPENDIX A: RELATED PARAMETERS IN TB MODEL
OF F-SC

We extract the hopping and on-site potential parameters t i j
αβ

and εi
α from ab init io calculation [53] by the Slater-Koster

method [81]. Table I gives the matrix elements related to
the two-center overlap integrals between diverse orbitals with
involved direction cosines listed in Table II. These hopping
parameters for graphene and fluorographene are listed in
Table III [53].

APPENDIX B: DEFECT EFFECTS ON THE DOS OF H-SC

In realistic samples, less perfect adatom positions exist. We
introduce the defect density ρ measuring less perfect adatom
positions, i.e., the percentage ratio between the number of ran-
dom missed hydrogen atoms in functionalized Area II and the
total number of hydrogen adatoms that ought to be in Area II.
Figure 7 shows the LDOS and TDOS of H-SC with I = 4 and
W = 297.5a under different defect densities. For weak dif-
ferent defect densities with ρ = 1% and 3%, the low-energy
states inside |E/t | � 1 are still confined in Area I. However,
under higher defect density, the LDOS of Area II obviously
increases at some energy ranges about 0.7 � |E/t | � 1. In
this case, even for the low-energy states the H-SC with higher
defect density can be not viewed an ideal SC fractal.
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[48] F. Karlický, R. Zbořil, and M. Otyepka, J. Chem. Phys. 137,
034709 (2012).

[49] A. B. Bourlinos, K. Safarova, K. Siskova, and R. Zbořil, Carbon
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